Skip to main content Accessibility help
×
Home

Towards electroformed nanostructured aluminum alloys with high strength and ductility

  • Shiyun Ruan (a1) and Christopher A. Schuh (a1)

Abstract

Nanostructured Al–Mn alloys are proposed as high-strength low-density materials, which can be electroformed (i.e., produced electrolytically and removed from the substrate) from ionic liquid. A variety of current waveforms, including direct current (DC) and pulsed current (PC), are used to electrodeposit nanostructured Al–Mn alloys, with some PC methods producing significant improvements in film ductility. Transmission electron microscopy observations point to a number of structural advantages induced by PC that apparently ductilize the Al–Mn alloys: (i) grain refinement to the nanocrystalline range without the introduction of a competing amorphous phase, (ii) unimodal nanocrystalline grain size distribution, and (iii) more homogeneous structure. The significant increase in apparent ductility in the PC alloys is also apparently related to stress- or deformation-induced grain growth, which leads to alloys with unique combinations of specific hardness and film ductility.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Towards electroformed nanostructured aluminum alloys with high strength and ductility
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Towards electroformed nanostructured aluminum alloys with high strength and ductility
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Towards electroformed nanostructured aluminum alloys with high strength and ductility
      Available formats
      ×

Copyright

Corresponding author

b)Address all correspondence to this author. e-mail: schuh@mit.eduThis author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/

References

Hide All
1.Inoue, A.: Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 43, 365 (1998).
2.Youssef, K.M., Scattergood, R.O., Murty, K.L., and Koch, C.C.: Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility. Scr. Mater. 54, 251 (2006).
3.Liddicoat, P.V., Xiao-Zhou, L., Yonghao, Z., Yuntian, Z., Murashkin, M.Y., Lavernia, E.J., Valiev, R.Z., and Ringer, S.P.: Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Commun. 1(63), 17 (2010).
4.Kawamura, Y., Mano, H., and Inoue, A.: Nanocrystalline aluminum bulk alloys with a high strength of 1420 MPa produced by the consolidation of amorphous powders. Scr. Mater. 44, 1599 (2001).
5.Topping, T., Ahn, B., Li, Y., Nutt, S., and Lavernia, E.: Influence of process parameters on the mechanical behavior of an ultrafine-grained Al alloy. Metall. Mater. Trans. A 43, 505 (2012).
6.Ahn, B., Mitra, R., Lavernia, E.J., and Nutt, S.R.: Effect of grain size on strain rate sensitivity of cryomilled Al-Mg alloy. J. Mater. Sci. 45, 4790 (2010).
7.Li, Y., Zhao, Y.H., Ortalan, V., Liu, W., Zhang, Z.H., Vogt, R.G., Browning, N.D., Lavernia, E.J., and Schoenung, J.M.: Investigation of aluminum-based nanocomposites with ultra-high strength. Mater. Sci. Eng. A 527, 305 (2009).
8.Sasaki, T.T., Ohkubo, T., and Hono, K.: Microstructure and mechanical properties of bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Acta Mater. 57, 3529 (2009).
9.Yang, B.J., Yao, J.H., Zhang, J., Yang, H.W., Wang, J.Q., and Ma, E.: Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength. Scr. Mater. 61, 423 (2009).
10.Zhao, Y.H., Liao, X.Z., Cheng, S., Ma, E., and Zhu, Y.T.: Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 18, 2280 (2006).
11.Zhu, Y.T. and Langdon, T.G.: The fundamentals of nanostructured materials processed by severe plastic deformation. JOM 56, 58 (2004).
12.Ma, E.: Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58, 49 (2006).
13.Schiotz, J., Di Tolla, F.D., and Jacobsen, K.W.: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 (1998).
14.Nieh, T.G. and Wadsworth, J.: Hall-Petch relation in nanocrystalline solids. Scr. Metall. Mater. 25, 955 (1991).
15.Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (1989).
16.Laslouni, W., Taibi, K., Dahmoun, D., and Azzaz, M.: Structure and properties of nanocrystalline Cu70Fe18Co12 obtained by mechanical alloying. J. Non-Cryst. Solids 353, 2090 (2007).
17.Sunol, J.J., Gonzalez, A., Bonastre, J., Clavaguera-Mora, M.T., and Arcondo, B.: Synthesis and characterization of nanocrystalline FeNiZrB developed by mechanical alloying. J. Alloys Compd. 434, 415 (2007).
18.Hellstern, E., Fecht, H.J., Fu, Z., and Johnson, W.L.: Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu. J. Appl. Phys. 65, 305 (1989).
19.Stueber, M., Holleck, H., Leiste, H., Seemann, K., Ulrich, S., and Ziebert, C.: Concepts for the design of advanced nanoscale PVD multilayer protective thin films. J. Alloys Compd. 483, 321 (2009).
20.Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).
21.Hahn, H.: Gas phase synthesis of nanocrystalline materials. Nanostruct. Mater. 9, 3 (1997).
22.Hahn, H. and Averback, R.S.: The production of nanocrystalline powders by magnetron sputtering. J. Appl. Phys. 67, 1113 (1990).
23.Detor, A.J. and Schuh, C.A.: Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 55, 371 (2007).
24.Sriraman, K.R., Raman, S.G.S., and Seshadri, S.K.: Corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys. Mater. Sci. Eng. A 460, 39 (2007).
25.Wu, B.Y.C., Ferreira, P.J., Schuh, C.A., and Nieh, T.G.: Nanostructured Ni-Co alloys with tailorable grain size and twin density. Metall. Mater. Trans. A 36A, 1927 (2005).
26.Ebrahimi, F., Bourne, G.R., Kelly, M.S., and Matthews, T.E.: Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct. Mater. 11, 343 (1999).
27.Ebrahimi, F., Kong, D., Matthews, T.E., and Zhai, Q.: Processing of metallic nanostructures by electrodeposition techniques, in Processing and Fabrication of Advanced Materials VII, edited by Srivastan, T.S. and Khor, K.A. (TMS Publication, Warrendale, PA, 1998), p. 509.
28.Erb, U.: Electrodeposited nanocrystals: Synthesis, properties and industrial applications. Nanostruct. Mater. 6, 533 (1995).
29.Natter, H. and Hempelmann, R.: Tailor-made nanomaterials designed by electrochemical methods. Electrochim. Acta 49, 51 (2003).
30.Boylan, K., Ostrander, D., Erb, U., Palumbo, G., and Aust, K.T.: In-situ TEM study of the thermal stability of nanocrystalline Ni-P. Scr. Metall. Mater. 25, 2711 (1991).
31.Jones, A.R., Hamann, J., Lund, A.C., and Schuh, C.A.: Nanocrystalline Ni-W alloy coating for engineering applications. Plat. Surf. Finish. 97, 52 (2010).
32.Natter, H., Schmelzer, M., and Hempelmann, R.: Nanocrystalline nickel and nickel-copper alloys: Synthesis, characterization, and thermal stability. J. Mater. Res. 13, 1186 (1998).
33.Carl, M.R.: Electroforming. Met. Finish. 93, 369 (1995).
34.Hart, T. and Watson, A.: Electroforming. Met. Finish. 100, 372 (2002).
35.Grushko, B. and Stafford, G.R.: Structural study of electrodeposited aluminum-manganese alloys. Metall. Trans. A 20, 1351 (1989).
36.Read, H.J. and Shores, D.A.: Structural characteristics of some electrodeposited aluminum-manganese alloys. Electrochem. Technol. 4, 526 (1966).
37.Takayama, T., Seto, H., Uchida, J., and Hinotani, S.: Local structure and concentration in Al-Mn alloy electrodeposits. J. Appl. Electrochem. 24, 131 (1994).
38.Simon, W. and Boldin, D.: Electric equipment of an aluminum electroplating facility according to the sigal process die elektrische ausruestung einer anlage zur galvanischen abscheidung von aluminium nach dem sigal-verfahren. Galvanotechnik 78, 954 (1987).
39.Birkle, S.: Electrochemical deposition of aluminum. Sigal technique: Process and material properties Elektrochemische Al-Abscheidung. MO Metalloberfläche Beschichten von Metall und Kunststoff 42, 511 (1988).
40.Fromberg, W. and Donaldson, F.A.S.: Electroplating with aluminum. J. Appl. Manuf. Syst. 8, 61 (1996).
41.Fromberg, W. and Donaldson, F.A.S.: Electroplating with aluminum. Adv. Mater. Processes 149, 33 (1996).
42.Schmidt, F.J. and Hess, I.J.: Properties of electroformed aluminum. Plating 53, 229 (1966).
43.Schmidt, F.J. and Hess, I.J.: Electroforming Aluminum for Solar Energy Concentrators; NASA Contractor Report CR-197 (1965).
44.El Abedin, S.Z., Moustafa, E.M., Hempelmann, R., Natter, H., and Endres, F.: Electrodeposition of nano- and microcrystalline aluminium in three different air and water stable ionic liquids. ChemPhysChem 7, 1535 (2006).
45.Moustafa, E.M., El Abedin, S.Z., Shkurankov, A., Zschippang, E., Saad, A.Y., Bund, A., and Endres, F.: Electrodeposition of Al in 1-butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide and 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide ionic liquids: In situ STM and EQCM studies. J. Phys. Chem. B 111, 4693 (2007).
46.Endres, F., Bukowski, M., Hempelmann, R., and Natter, H.: Electrodeposition of nanocrystalline metals and alloys from ionic liquids. Angew. Chem. Int. Ed. 42, 3428 (2003).
47.Natter, H., Bukowski, M., Hempelmann, R., El Abedin, S.Z., Moustafa, E.M., and Endres, F.: Electrochemical deposition of nanostructured metals and alloys from ionic liquids. Z. Phys. Chem. 220, 1275 (2006).
48.Ruan, S.Y. and Schuh, C.A.: Electrodeposited Al-Mn alloys with microcrystalline, nanocrystalline, amorphous and nano-quasicrystalline structures. Acta Mater. 57, 3810 (2009).
49.Fujiwara, T. and Igasaki, Y.: The effects of pulsing the current in galvanostatic electrodeposition technique on the composition and surface morphology of In-Se films. J. Cryst. Growth 178, 321 (1997).
50.Lee, J., Farhangfar, S., Lee, J., Cagnon, L., Scholz, R., Gosele, U., and Nielsch, K.: Tuning the crystallinity of thermoelectric Bi2Te3 nanowire arrays grown by pulsed electrodeposition. Nanotechnology 19, (2008).
51.Nikolova, L., Ignatova, K., and Stefanova, S.: Effect of pulsating electrolysis parameters on the morphology and structure of Pd-Ag powder. J. Appl. Electrochem. 26, 1059 (1996).
52.Kalaniary, M.R., Gabe, D.R., and Goodenough, M.R.: Unipolar and bipolar pulsed current electrodeposition for PCB production. J. Appl. Electrochem. 23, 231 (1993).
53.Wong, K.P., Chan, K.C., and Yue, T.M.: A study of surface finishing in pulse current electroforming of nickel by utilizing different shaped waveforms. Surf. Coat. Technol. 115, 132 (1999).
54.Mishra, A.C., Thakur, A.K., and Srinivas, V.: Effect of deposition parameters on microstructure of electrodeposited nickel thin films. J. Mater. Sci. 44, 3520 (2009).
55.Saravanan, G. and Mohan, S.: Pulsed electrodeposition of microcrystalline chromium from trivalent Cr-DMF bath. J. Appl. Electrochem. 39, 1393 (2009).
56.Zhu, Q. and Hussey, C.L.: Galvanostatic pulse plating of Cu-Al alloy in a room-temperature chloroaluminate molten salt—rotating ring-disk electrode studies. J. Electrochem. Soc. 148, C395 (2001).
57.Giro, F., Bedner, K., Dhum, C., Hoffmann, J.E., Heussler, S.P., Jian, L., Kirsch, U., Moser, H.O., and Saumer, M.: Pulsed electrodeposition of high aspect-ratio NiFe assemblies and its influence on spatial alloy composition. Microsyst. Technol. 14, 1111 (2008).
58.Fei, J.-Y. and Wilcox, G.D.: Electrodeposition of Zn-Co alloys with pulse containing reverse current. Electrochim. Acta 50, 2693 (2005).
59.Ruan, S. and Schuh, C.A.: Mesoscale structure and segregation in electrodeposited nanocrystalline alloys. Scr. Mater. 59, 1218 (2008).
60.Chin, G.Y., Hosford, W.F., and Backofen, W.A.: Ductile fracture of aluminum. Trans. Metall. Soc. AIME 230, 437 (1964).
61.French, I. and Weinrich, P.: The effects of hydrostatic pressure on the mechanism of tensile fracture of aluminum. Metall. Mater. Trans. A 6, 1165 (1975).
62.Ruan, S., Torres, K.L., Thompson, G.B., and Schuh, C.A.: Gallium-enhanced phase contrast in atom probe tomography of nanocrystalline and amorphous Al-Mn alloys. Ultramicroscopy 111, 1062 (2011).
63.Van Swygenhoven, H. and Derlet, P.M.: Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B 64, 224105 (2001).
64.Shan, Z., Stach, E.A., Wiezorek, J.M.K., Knapp, J.A., Follstaedt, D.M., and Mao, S.X.: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).
65.Wang, Y.B., Ho, J.C., Liao, X.Z., Li, H.Q., Ringer, S.P., and Zhu, Y.T.: Mechanism of grain growth during severe plastic deformation of a nanocrystalline Ni–Fe alloy. Appl. Phys. Lett. 94, 011908 (2009).
66.Legros, M., Gianola, D.S., and Hemker, K.J.: In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater. 56, 3380 (2008).
67.Hemker, K.J., Gianola, D.S., Van Petegem, S., Legros, M., Brandstetter, S., and Van Swygenhoven, H.: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 (2006).
68.Ni, S., Wang, Y.B., Liao, X.Z., Alhajeri, S.N., Li, H.Q., Zhao, Y.H., Lavernia, E.J., Ringer, S.P., Langdon, T.G., and Zhu, Y.T.: Grain growth and dislocation density evolution in a nanocrystalline Ni-Fe alloy induced by high-pressure torsion. Scr. Mater. 64, 327 (2011).
69.Dao, M., Lu, L., Asaro, R.J., De Hosson, J.T.M., and Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007).

Keywords

Related content

Powered by UNSILO

Towards electroformed nanostructured aluminum alloys with high strength and ductility

  • Shiyun Ruan (a1) and Christopher A. Schuh (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.