Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T08:24:12.589Z Has data issue: false hasContentIssue false

Titania nanotubes prepared by anodization in fluorine-free acids

Published online by Cambridge University Press:  31 January 2011

C. Richter
Affiliation:
Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115
E. Panaitescu
Affiliation:
Department of Physics, Northeastern University, Boston, Massachusetts 02115
R. Willey
Affiliation:
Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115
L. Menon*
Affiliation:
Department of Physics, Northeastern University, Boston, Massachusetts 02115
*
a)Address all correspondence to this author. e-mail: l.menon@neu.edu
Get access

Abstract

Recently, we reported the discovery of new high-aspect ratio titania nanotubes. These nanotubes were synthesized by means of anodization in an oxalic acid electrolyte containing chlorine ions and were found to have significant carbon content. In this article, the synthesis of similar titania nanotubes in oxalic, formic, trichloroacetic, gluconic, hydrochloric, and sulfuric acid is reported. Differences in carbon content and morphology are analyzed, which in turn provides information on the chemistry of the formation of these nanotubes. Our results suggest that the carbon content in the nanotubes can be controlled by the use of an appropriate organic acid.

Type
Articles
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Paulose, M., Mor, G.K., Varghese, O.K., Shankar, K.Grimes, C.A.: Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J. Photochem. Photobiol., A 178, 8 2006CrossRefGoogle Scholar
2Park, J.H., Kim, S.Bard, A.J.: Novel carbon-doped TiO2nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Letters 6, 24 2006CrossRefGoogle Scholar
3Quan, X., Yang, S., Ruan, X.Zhao, H.: Preparation of titania nanotubes and their environmental applications as electrode. Environ. Sci. Technol. 39, 3770 2005CrossRefGoogle ScholarPubMed
4Paulose, M., Varghese, O.K., Mor, G.K., Grimes, C.A.Ong, K.G.: Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 17, 398 2006CrossRefGoogle Scholar
5Liu, S.Chen, A.: Coadsorption of horseradish peroxidase with thionine on TiO2nanotubes for biosensing. Langmuir 21, 8409 2005CrossRefGoogle Scholar
6Yang, B., Uchida, M., Kim, H-M., Zhang, X.Kokubo, T.: Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25, 1003 2004CrossRefGoogle ScholarPubMed
7Zwilling, V.Darque-Ceretti, E.: Characterisation d’oxydase anodiques poreux et compacts de titane et de TaV6. Ann. Chim. Sci. Mater. 22, 482 1997Google Scholar
8Zwilling, V., Aucouturier, M.Darque-Ceretti, E.: Anodic oxidation of titanium and TA6V alloy in chromic media: An electrochemical approach. Electrochim. Acta 45, 921 1999CrossRefGoogle Scholar
9Gong, D., Grimes, C.A., Varghese, O.K., Chen, Z., Hu, W.Diekey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 2001CrossRefGoogle Scholar
10Cai, Q., Paulose, M., Varghese, O.K.Grimes, C.A.: The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20, 230 2005CrossRefGoogle Scholar
11Macák, J., Tsuchiya, M.H.Schmuki, P.: High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem., Int. Ed. Engl. 44, 2100 2005CrossRefGoogle ScholarPubMed
12Macak, J.M., Tsuchiya, H., Taveira, L., Aldabergerova, S.Schmuki, P.: Smooth anodic TiO2nanotubes. Angew. Chem., Int. Ed. Engl. 44, 7463 2005CrossRefGoogle Scholar
13Ruan, C., Paulose, M., Varghese, O.K., Mor, G.K.Grimes, C.A.: Fabrication of highly ordered TiO2nanotube arrays using an organic electrolyte. J. Phys. Chem. B. 109, 15754 2005CrossRefGoogle Scholar
14Paulose, M., Shankar, K., Yoriya, S., Prakasam, H.E., Varghese, O.K., Mor, G.K., Latempa, T.A., Fitzgerald, A.Grimes, C.A.: Anodic growth of highly ordered TiO2nanotube arrays to μm in length. J. Phys. Chem. B 110, 16179 2006CrossRefGoogle Scholar
15Nakayama, K., Kubo, T., Tsubokura, A., Nishikitani, Y.Masuda, H.: Anodic formation of high-aspect-ratio titania nanotubes. ECS Meeting Abstracts 502, 819 2006CrossRefGoogle Scholar
16Yu, X., Li, Y., Ge, W., Yang, Q., Zhu, N.Kalantar-Zadeh, K.: Formation of nanoporous titanium oxide films on silicon substrates using an anodization process. Nanotechnology 17, 808 2006CrossRefGoogle Scholar
17Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T.Niihara, K.: Formation of titanium oxide nanotube. Langmuir 14, 3160 1998CrossRefGoogle Scholar
18Richter, C., Wu, Z., Panaitescu, E., Willey, R.J.Menon, L.: Ultra-high aspect ratio titania nanotubesAdv. Mater., (2007)CrossRefGoogle Scholar
19Varghese, O.K., Gong, D., Pulose, M., Grimes, C.A.Dickey, E.C.: Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156 2003CrossRefGoogle Scholar
20Ghicov, A., Tsuchiya, H., Macak, J.M.Schmuki, P.: Annealing effects on the photoresponse of TiO2nanotubes. Phys. Status Solidi A 203, R28 2006CrossRefGoogle Scholar
21Yu, J.C., Yu, J.G., Ho, W.K., Jiang, Z.T.Zhang, L.Z.: Effects of Fdoping on the photocatalytic activity and microstructures of nanocrystalline TiO2powders. Chem. Mater. 14, 3808 2002CrossRefGoogle Scholar
22Pohrelyuk, I.M., Yas’kiv, O.I., Fedirko, V.M.Huryn, S.V.: Laws of formation of oxycarbide layers on titanium in carbon- and oxygen-containing media. Mater. Sci. 39, 400 2003CrossRefGoogle Scholar
23Shanmugam, S., Gabashvili, A., Jacob, D.S., Yu, J.C.Gedanken, A.: Synthesis and characterization of TiO2–C core-shell composite nanoparticles and evaluation of their photocatalytic activities. Chem. Mater. 18, 2275 2006CrossRefGoogle Scholar
24Tsumura, T., Kojitani, N., Izumi, I., Iwashita, N., Toyoda, M.Inagaki, M.: Carbon coating of anatase-type TiO2and photoactivity. J. Mater. Chem. 12, 1391 2002CrossRefGoogle Scholar
25Fracassi, F.D’Agostino, R.: Chemistry of titanium dry etching in fluorinated and chlorinated gases. Pure Appl. Chem. 64, 703 1992CrossRefGoogle Scholar
26Yang, F.Hlavacek, V.: Effective extraction of titanium from rutile by a low-temperature chloride process. AIChE J. 46, 355 2000CrossRefGoogle Scholar
27Richter, C., Wu, Z.Menon, L.: Pattern formation in nanoporous titania templates. J. Nanosci. Nanotechnol. 7, 704 2006CrossRefGoogle Scholar
28Taveira, L.V., Macak, J.M., Tsuchiya, H., Dick, L.F.P.Schmuki, P.: Initiation and growth of self-organized TiO2nanotubes anodically formed in NH4F/(NH4)2SO4electrolytes. J. Electrochem. Soc. 152, B405 2005CrossRefGoogle Scholar
29Wang, H.Lewis, J.P.: Effects of dopant states on photoactivity in carbon-doped TiO2. J. Phys.: Condens. Matter. 17, L209 2005Google Scholar
30Inagaki, M., Kojin, F., Tryba, B.Toyoda, M.: Carbon-coated anatase: The role of the carbon layer for photocatalytic performance. Carbon 43, 1652 2005CrossRefGoogle Scholar
31Khan, S.U.M., Al-Shahry, M., Ingler, W.B.Jr., : Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 2002CrossRefGoogle ScholarPubMed
32Choi, Y., Umebayashi, T.Yoshikawa, M.: Fabrication and characterization of C-doped anatase TiO2photocatalysts. J. Mater. Sci. 39, 1837 2004CrossRefGoogle Scholar
33Varghese, O.K., Paulose, M., Shankar, K., Mor, G.K.Grimes, C.A.: Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J. Nanosci. Nanotechnol. 5, 1158 2005CrossRefGoogle ScholarPubMed