Skip to main content Accessibility help

Three-dimensional visualization of nanoscale structure and deformation

  • Edward J. McCumiskey (a1), Nicholas G. Rudawski (a2), W. Gregory Sawyer (a3) and Curtis R. Taylor (a3)


A straightforward approach allowing three-dimensional (3D) visualization of subsurface deformation beneath nanoindents using reconstructed cross-sectional transmission electron microscopy (TEM) data is demonstrated. This approach relies on generating an array of nanoindents, extracting a thin (<200 nm) cross section using a focused ion beam (FIB) and imaging with a transmission electron microscope. By rotating the orientation of the FIB cross section with respect to the array of nanoindents at the optimal angle, it is guaranteed that a different section of each nanoindent's subsurface plastic zone is contained within the final cross section. Subsequently, TEM images corresponding to different sections are reconstructed into a 3D image of a representative nanoindentation plastic zone. This approach can be extended to any array of nominally identical features that can be patterned with regular spacing and included in a single FIB cross section. It was also found to significantly enhance the throughput of preparing routine site-specific TEM samples, even when 3D visualization is not necessary. In this article, the approach is applied to visualize the plastic zones beneath nanoindents in GaAs (001), for loads of 50–1000 µN.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Kramer, D., Huang, H., Kriese, M., Robach, J., Nelson, J., Wright, A., Bahr, D., and Gerberich, W.: Yield strength predictions from the plastic zone around nanocontacts. Acta Mater. 47, 333343 (1998).
2.Lebourhis, E. and Patriarche, G.: Transmission electron microscopy observations of low-load indents in GaAs. Philos. Mag. Lett. 79, 805812 (1999).
3.Lucca, D., Herrmann, K., and Klopfstein, M.: Nanoindentation: Measuring methods and applications. CIRP Ann. - Manuf. Technol. 59, 803819 (2010).
4.Lloyd, S.J., Castellero, A., Giuliani, F., Long, Y., McLaughlin, K.K., Molina-Aldareguia, J.M., Stelmashenko, N.A., Vandeperre, L.J., and Clegg, W.J.: Observations of nanoindents via cross-sectional transmission electron microscopy: A survey of deformation mechanisms. Proc. R. Soc., Ser. A 461, 25212543 (2005).
5.Jang, D., Li, X., Gao, H., and Greer, J.R.: Deformation mechanisms in nanotwinned metal nanopillars. Nat. Nanotechnol. 7, 594601 (2012).
6.Langford, R.M. and Petford-Long, A.K.: Preparation of transmission electron microscopy cross-section specimens using focused ion beam milling. J. Vac. Sci. Technol., A 19, 2186 (2001).
7.Lomness, J.K., Giannuzzi, L.A., and Hampton, M.D.: Site-specific transmission electron microscope characterization of micrometer-sized particles using the focused ion beam lift-out technique. Microsc. Microanal. 7, 418423 (2001).
8.Mayer, J., Giannuzzi, L.A., Kamino, T., and Michael, J.: TEM sample preparation and FIB-induced damage. MRS Bull. 32, 400407 (2007).
9.Van Tendeloo, G., Bals, S., Van Aert, S., Verbeeck, J., and Van Dyck, D.: Advanced electron microscopy for advanced materials. Adv. Mater. 24, 56555675 (2012).
10.Holzer, L., Indutnyi, F., Gasser, P.H., Münch, B., and Wegmann, M.: Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography. J. Microsc. 216, 8495 (2004).
11.Grandfield, K., Palmquist, A., and Engqvist, H.: High-resolution three-dimensional probes of biomaterials and their interfaces. Philos. Trans. R. Soc. London, Ser. A 370, 13371351 (2012).
12.Tomiyasu, B., Fukuju, I., Komatsubara, H., Owari, M., and Nihei, Y.: High spatial resolution 3D analysis of materials using gallium focused ion beam secondary ion mass spectrometry (FIB SIMS). Nucl. Instrum. Methods Phys. Res., Sect. B 136138, 10281033 (1998).
13.Lučić, V., Förster, F., and Baumeister, W.: Structural studies by electron tomography: From cells to molecules. Annu. Rev. Biochem. 74, 833865 (2005).
14.Koster, A.J., Ziese, U., Verkleij, A.J., Janssen, A.H., and de Jong, K.P.: Three-dimensional transmission electron microscopy: A novel imaging and characterization technique with nanometer scale resolution for materials science. J. Phys. Chem. B 104, 93689370 (2000).
15.Bals, S., Van Tendeloo, G., and Kisielowski, C.: A new approach for electron tomography: Annular dark-field transmission electron microscopy. Adv. Mater. 18, 892895 (2006).
16.Schneider, C.A., Rasband, W.S., and Eliceiri, K.W.: NIH image to imageJ: 25 years of image analysis. Nat. Methods 9, 671675 (2012).
17.Ge, D., Minor, A., Stach, E., and Morris, J.: Size effects in the nanoindentation of silicon at ambient temperature. Philos. Mag. 86, 40694080 (2006).
18.Ge, D., Domnich, V., Juliano, T., Stach, E., and Gogotsi, Y.: Structural damage in boron carbide under contact loading. Acta Mater. 52, 39213927 (2004).
19.Oliver, D.J., Bradby, J.E., Williams, J.S., Swain, M.V., and Munroe, P.P.: Thickness-dependent phase transformation in nanoindented germanium thin films. Nanotechnology 19, 475709 (2008).
20.Lawn, B.: Fracture and deformation in brittle solids: A perspective on the issue of scale. J. Mater. Res. 19, 2229 (2004).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed