Skip to main content Accessibility help
×
Home

Thio-oxynitride phosphate glass electrolytes prepared by mechanical milling

  • Nerea Mascaraque (a1), José Luis G. Fierro (a2), Francisco Muñoz (a3), Alicia Durán (a3), Yusuke Ito (a4), Yoshiaki Hibi (a4), Ryo Harada (a4), Atsutaka Kato (a4), Akitoshi Hayashi (a4) and Masahiro Tatsumisago (a4)...

Abstract

Lithium thio-phosphorus oxynitride glasses, LiPOSN, have been prepared by mechanical milling process from the mixture of Li2S and LiPON glass. The anionic substitution of oxygen by sulphur and nitrogen in the phosphate glass structure has been confirmed by 1D 31P solid state nuclear magnetic resonance and x-ray photoelectron spectroscopy. The study of thermal and electrical properties reveals a decrease in the glass transition temperature, likely due to the depolymerization of glass network by the decrease of bridging oxygens and sulphurs, along with a sharp increase in the ionic conductivity when lithium sulphide is incorporated into the oxynitride glasses. The improvement of chemical durability by the introduction of nitrogen, together with the increase in ionic conductivity up to values closed to the value of commercial LiPON thin film electrolyte, suggests that these LiPOSN glasses could be good candidates as solid electrolytes for lithium microbatteries.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: mascaraque@icv.csic.es

References

Hide All
1. Ito, Y., Sakuda, A., Ohtomo, T., Hayashi, A., and Tatsumisago, M.: Preparation of Li2S–GeS2 solid electrolyte thin films using pulsed laser deposition. Solid State Ionics 236, 1 (2013).
2. Sakuda, A., Hayashi, A., Ohtomo, T., Hama, S., and Tatsumisago, M.: All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes. J. Power Sources 196, 6735 (2011).
3. Sakurai, Y., Sakuda, A., Hayashi, A., and Tatsumisago, M.: Preparation of amorphous Li4SiO4–Li3PO4 thin films by pulsed laser deposition for all-solid-state lithium secondary batteries. Solid State Ionics 182, 59 (2011).
4. Seo, I. and Martin, S.W.: Fast lithium ion conducting solid state thin-film electrolytes based on lithium thio-germanate materials. Acta Mater. 59, 1839 (2011).
5. Yamashita, M. and Yamanaka, H.: Formation and ionic conductivity of Li2S–GeS2–Ga2S3 glasses and thin films. Solid State Ionics 158, 151 (2003).
6. Tatsumisago, M., Morimoto, H., Yamashita, H., and Minami, T.: Preparation of amorphous solid electrolytes in the system Li2S–SiS2–Li4SiO4 by mechanical milling. Solid State Ionics 136137, 483 (2000).
7. Hayashi, A., Hama, S., Morimoto, H., Tatsumisago, M., and Minami, T.: Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 84, 477 (2001).
8. Trevey, J.E., Gilsdorf, J.R., Miller, S.W., and Lee, S-H.: Li2S–Li2O–P2S5 solid electrolyte for all-solid-state lithium batteries. Solid State Ionics 214, 25 (2012).
9. Trevey, J.E., Jung, Y.S., and Lee, S-H.: Preparation of Li2S–GeSe2–P2S5 electrolytes by a single step ball milling for all-solid-state lithium secondary batteries. J. Power Sources 195, 4984 (2010).
10. Agostini, M., Aihara, Y., Yamada, T., Scrosati, B., and Hassoun, J.: A lithium–sulfur battery using a solid, glass-type P2S5–Li2S electrolyte. Solid State Ionics 244, 48 (2013).
11. Mizuno, F., Hayashi, A., Tadanaga, K., and Tatsumisago, M.: New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv. Mater. 17, 918 (2005).
12. Tatsumisago, M. and Hayashi, A.: Superionic glasses and glass-ceramics in the Li2S-P2S5 system for all-solid-state lithium secondary batteries. Solid State Ionics 225, 342 (2012).
13. Minami, K., Hayashi, A., Ujiie, S., and Tatsumisago, M.: Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li2S–P2S5–P2S3 and Li2S–P2S5–P2O5 . Solid State Ionics 192, 122 (2011).
14. Ohtomo, T., Hayashi, A., Tatsumisago, M., and Kawamoto, K.: Characteristics of the Li2O–Li2S–P2S5 glasses synthesized by the two-step mechanical milling. J. Non-Cryst. Solids 364, 57 (2013).
15. Le Sauze, A. and Marchand, R.: Chemically durable nitrided phosphate glasses resulting from nitrogen/oxygen substitution within PO4 tetrahedra. J. Non-Cryst. Solids 263264, 285 (2000).
16. Reidmeyer, M.R. and Day, D.E.: Phosphorus oxynitride glasses. J. Non-Cryst. Solids 181, 201 (1995).
17. Wang, B., Kwak, B.S., Sales, B.C., and Bates, J.B.: Ionic conductivities and structure of lithium phosphorus oxynitride glasses. J. Non-Cryst. Solids 183, 297 (1995).
18. Muñoz, F., Durán, A., Pascual, L., Montagne, L., Revel, B., and Rodrigues, A.C.M.: Increased electrical conductivity of LiPON glasses produced by ammonolysis. Solid State Ionics 179, 574 (2008).
19. Mascaraque, N., Fierro, J.L.G., Durán, A., and Muñoz, F.: An interpretation for the increase of ionic conductivity by nitrogen incorporation in LiPON oxynitride glasses. Solid State Ionics 233, 73 (2013).
20. Mascaraque, N., Takebe, H., Tricot, G., Fierro, J.L.G., Durán, A., and Muñoz, F.: Structure and electrical properties of a new thio-phosphorus oxynitride glass electrolyte. J. Non-Cryst. Solids 405, 159 (2014).
21. Muñoz, F., Pascual, L., Durán, A., Rocherullé, J., and Marchand, R.: Alkali and alkali-lead oxynitride phosphate glasses: A comparative structural study by NMR and XPS. C. R. Chim. 5, 731 (2002).
22. Wagner, C.D., Davis, L.E., Zeller, M.V., Taylor, J.A., Raymond, R.H., and Gale, L.H.: Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. 3, 211 (1981).
23. Hayashi, A., Araki, R., Tadanaga, K., Tatsumisago, M., and Minami, T.: High resolution solid state NMR studies of ionically conductive Li2S–SiS2–Li2O–P2O5 oxysulphide glasses. Phys. Chem. Glasses 40, 140 (1999).
24. Hirai, K., Tatsumisago, M., Takahashi, M., and Minami, T.: 29Si and 31P MAS-NMR spectra of Li2S-SiS2-Li3PO4 rapidly quenched glasses. J. Am. Ceram. Soc. 79, 349 (1996).
25. Minami, K., Mizuno, F., Hayashi, A., and Tatsumisago, M.: Structure and properties of the 70Li2S (30-x)P2S5 xP2O5 oxysulfide glasses and glass–ceramics. J. Non-Cryst. Solids 354, 370 (2008).
26. Brow, R.K.: Review: The structure of simple phosphate glasses. J. Non-Cryst. Solids 263264, 1 (2000).
27. Bunker, B.C., Tallant, D.R., Balfe, C.A., Kirkpatrick, R.J., Turner, G.L., and Reidmeyer, M.R.: Structure of phosphorus oxynitride glasses. J. Am. Ceram. Soc. 70, 675 (1987).
28. Le Sauze, A., Montagne, L., Palavit, G., Fayon, F., and Marchand, R.: X-ray photoelectron spectroscopy and nuclear magnetic resonance structural study of phosphorus oxynitride glasses, ‘LiNaPON’. J. Non-Cryst. Solids 263264, 139 (2000).
29. Veprek, S., Iqbal, S., Brunner, L.J., and Scharli, M.: Preparation and properties of amorphous phosphorus nitride prepared in a low-pressure plasma. Philos. Mag. 43, 527 (1981).
30. Marchand, R., Agliz, D., Boukbir, L., and Quemerais, A.: Characterization of nitrogen containing phosphate glasses by X-ray photoelectron spectroscopy. J. Non-Cryst. Solids 103, 35 (1988).
31. Brow, R.K., Reidmeyer, M.R., and Day, D.E.: Oxygen bonding in nitrided sodium- and lithium-metaphosphate glasses. J. Non-Cryst. Solids 99, 178 (1988).
32. Brückner, R., Chun, H-U., Goretzki, H., and Sammet, M.: XPS measurements and structural aspects of silicate and phosphate glasses. J. Non-Cryst. Solids 42, 49 (1980).
33. Foix, D., Gonbeau, D., Taillades, G., Pradel, A., and Ribes, M.: The structure of ionically conductive chalcogenide glasses: A combined NMR, XPS and ab initio calculation study. Solid State Ionics 3, 235 (2001).

Keywords

Thio-oxynitride phosphate glass electrolytes prepared by mechanical milling

  • Nerea Mascaraque (a1), José Luis G. Fierro (a2), Francisco Muñoz (a3), Alicia Durán (a3), Yusuke Ito (a4), Yoshiaki Hibi (a4), Ryo Harada (a4), Atsutaka Kato (a4), Akitoshi Hayashi (a4) and Masahiro Tatsumisago (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed