Skip to main content Accessibility help
×
Home

Thermoelectric properties and spark plasma sintering of doped YB22C2N

  • David Berthebaud, Toshiyuki Nishimura and Takao Mori (a1)

Abstract

YB22C2N is one of a series of rare earth borocarbonitrides and is potentially the long awaited n-type counterpart to boron carbide. We conducted studies on YB22C2N spark plasma sintered with additions of YB4 and YB25C, including the investigations of the densification process and the thermoelectric properties of the material. We discovered that a small amount of dopants can lower the starting temperature of densification during spark plasma sintering (SPS). Variations of pressure and temperature during the sintering process are also found to have an effect. Electrical conductivity of the dense samples has increased due to insertion of metal borides and also because of the improvement of the relative density. At the same time, only a slight reduction was observed for the Seebeck coefficient leading to an important improvement of power factor. The highest density of more than 95% was achieved with 5 wt% of YB25(C) dopant.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: MORI.Takao@nims.go.jp

References

Hide All
1.Mori, T.Higher boridesHandbook on the Physics and Chemistry of Rare Earths Vol. 38 edited by K.A Gschneidner, Jr., J-C. Bunzli, and V. Pecharsky (Elsevier, Amsterdam 2008)105
2.Mori, T.High temperature thermoelectric properties of B12 icosahedral cluster-containing rare earth boride crystals. J. Appl. Phys. 97, (09)3703 (2005)
3.Mori, T., Nishimura, T.Thermoelectric properties of homologous p- and n-type boron-rich borides. J. Solid State Chem. 179, (9)2908 (2006)
4.Mori, T., Nishimura, T., Yamaura, K., Takayama-Muromachi, E.High temperature thermoelectric properties of a homologous series of n-type boron icosahedra compounds: A possible counterpart to p-type boron carbide. J. Appl. Phys. 101, (09)3714 (2007)
5.Kanno, Y., Kawase, K., Nakano, K.Additive effect on sintering of boron carbide. Yogyo-Kyokai-Shi 95, 1137 (1987)
6.Roy, T.K., Subramanian, C., Suri, A.K.Presureless sintering of boron carbide. Ceram. Int. 32, (3)227 (2006)
7.Cai, K-f., Nan, C-W., Paderno, Y., McLachlan, D.S.Effect of titanium carbide addition on the thermoelectric properties of B4C ceramics. Solid State Commun. 115, (10)523 (2000)
8.Zhang, F., Leithe-Jasper, A., Xu, J., Mori, T., Matsui, Y., Tanaka, T., Okada, S.Novel rare earths boron-rich solids. J. Solid State Chem. 159, (1)174 (2001)
9.Zhang, F.X., Xu, F.F., Leithe-Jasper, A., Mori, T., Tanaka, T., Sato, A., Salamakha, P., Bando, Y.Incorporation of carbon atoms in rare earths boron-rich solids and formation of superstructures. J. Alloys Compd. 337, 120 (2002)
10.Fahrenholtz, W.G., Hilmas, G.E., Zhang, S.C., Zhu, S.Pressureless sintering of zirconium diboride: Particle size and additive effects. J. Am. Ceram. Soc. 91, (5)1398 (2008)
11.Sato, M., Nanko, M., Matsumaru, K., Ishizaki, K.Homogeneity in sintering of fine Ni-20Cr powder by pulsed electric current sintering (PECS) process. Adv. Tech. of Mater. Mater. Proc. J. 8, (1)101 (2006)
12.Anselmi-Tamburini, U., Garay, J.E., Munir, Z.A.Fundamental investigations on the spark plasma sintering/synthesis process. III. Current effect on reactivity. Mater. Sci. Eng., A 394, 132 (2005)

Keywords

Related content

Powered by UNSILO

Thermoelectric properties and spark plasma sintering of doped YB22C2N

  • David Berthebaud, Toshiyuki Nishimura and Takao Mori (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.