Skip to main content Accessibility help

Thermodynamic study and preparation of Si–B–N ceramic coating by LPCVD from SiCl4–NH3–BCl3–H2–Ar system

  • Jianping Li (a1), Laifei Cheng (a1), Fang Ye (a1), Yongsheng Liu (a1), Yan Zhu (a1) and Litong Zhang (a1)...


The codeposition characteristics of Si–B–N ceramics from the SiCl4–NH3–BCl3–H2–Ar system at lower temperatures and phase transformation of as-prepared Si–B–N ceramics at temperatures from 1200 to 1800 °C were investigated. Thermodynamic analysis results indicated that the BN + Si3N4 dual phase region existed from 800 to 1200 °C and that 800 °C was an optimum deposition temperature to deposit Si–B–N ceramic coating. Deposition efficiencies at equilibrium for Si3N4 and BN were high, particularly at temperatures below 1000 °C. Pressure and dilution ratio of H2 had little influence on deposition efficiencies of BN and Si3N4 at 800 °C. The amorphous Si–B–N ceramic coatings were successfully deposited at 800 °C from the same precursor system and contained N–B and N–Si bonds by XPS analysis. It kept amorphous below 1600 °C in N2 and partly transformed to α/β-Si3N4 when heat treated at 1600 °C in N2 for 2 h. These results demonstrated that the composite Si–B–N ceramics could be fabricated at 800 °C and used below 1600 °C.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Yanchun Zhou



Hide All
1. Lu, A.J.: SiBN ceramics, a stealth material at high temperature. Acta Phys. Sin. 62, 217101 (2013).
2. Liao, N.B., Xue, W., and Zhang, M.: Molecular dynamics investigation of Si–B–N ceramics: Effects of boron content. Modell. Simul. Mater. Sci. Eng. 20, 035009 (2012).
3. Baldus, H.P., Passing, G., and Eiling, A.: Amorphous fibres containing Si, B, and N, a process for the production thereof and the use thereof, and composites containing these fibres and the production thereof. U.S. Patent No. 5,985,430, 1999.
4. Peng, Y., Mou, S., Han, K., Yu, M., and Li, A.: Thermal stability and wave permeability of high performance SiBN(C) ceramic fibers. Acta Mater. Compositae Sin. 33, 358 (2016).
5. Peng, Y.Q., Han, K.Q., Zhao, X., and Yu, M.H.: Large-scale preparation of SiBN ceramic fibres from a single source precursor. Ceram. Int. 40, 4797 (2014).
6. Li, D., Zhang, C., Li, B., Cao, F., Wang, S., and Li, J.: Mechanical properties of unidirectional SiBN fiber reinforced boron nitride matrix composites. Mater. Lett. 68, 222 (2012).
7. Zhao, X., Han, K., Peng, Y., Yuan, J., Li, S., and Yu, M.: A novel precursor route for the production of Si–B–N ceramic fibers. Mater. Lett. 65, 2717 (2011).
8. Tang, Y., Wang, J., Li, X., Xie, Z., Wang, H., Li, W., and Wang, X.: Polymer-derived SiBN fiber for high-temperature structural/functional applications. Chem.–Eur. J. 16, 6458 (2010).
9. Maeda, M. and Makino, T.: Low dielectric-constant amorphous sibn ternary films prepared by plasma-enhanced deposition. Jpn. J. Appl. Phys., Part 1 26, 660 (1987).
10. Neureither, B., Basa, C., Sandwick, T., and Blumenstock, K.: Boron nitride and silicon boron nitride film and polish characterization. J. Electrochem. Soc. 140, 3607 (1993).
11. Essafti, A., Gómez-Aleixandre, C., Fierro, J.L.G., Fernández, M., and Albella, J.M.: Chemical vapor deposition synthesis and characterization of co-deposited silicon–nitrogen–boron materials. J. Mater. Res. 11, 2565 (1996).
12. Hua, M., Xiang, Y., Junfeng, Y., and Chengbiao, W.: Effect of dc negative-bias and silicon introduction on performance of Si–B–N composite film by RF-PECD technique. Appl. Surf. Sci. 245, 45 (2005).
13. Masahiko, M.: Effect of oxygen doping into SiBN ternary film. Jpn. J. Appl. Phys. 29, 1789 (1990).
14. Essafti, A., Gómez-Aleixandre, C., and Albella, J.M.: Preparation of SiNB films by CVD techniques: Effect of SiH4 addition to B2H6 and NH3 gas mixtures. Diamond Relat. Mater. 5, 580 (1996).
15. Stöckel, S., Marx, G., and Goedel, W.A.: Coating of ceramic SiC, SiBNC, and Al2O3 fibers with SiBN using a continuous CVD process—Influence of stoichiometry on stability against oxidation and hydrolysis. Chem. Vap. Deposition 13, 553 (2007).
16. Liu, Y., Chai, N., Li, Z., Ye, F., Liu, X., and Cheng, L.: Effect of deposition temperature on deposition kinetics and mechanism of silicon boron nitride coating deposited from SiCl4–BCl3–NH3–H2–Ar mixture using low pressure chemical vapor deposition. Surf. Coat. Technol. 261, 295 (2015).
17. Moore, A.W., Sayir, H., Fanner, S.C., and Morscher, G.N.: Improved interface coatings for SiC fibers in ceramic composites. Presented at the Proceedings of the 19th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures—A: Ceramic Engineering and Science Proceedings, John Wiley & Sons, Inc., Hoboken, NJ, 2008; p. 409.
18. Liu, Y.S., Chai, N., Qin, L., Li, Z., Ye, F., and Cheng, L.F.: Tensile fracture behavior and strength distribution of SiCf/SiC composites with different SiBN interface thicknesses. Ceram. Int. 41, 1609 (2015).
19. Li, Z., Cheng, L., Liu, Y., and Ye, F.: Thermodynamic analysis of chemical vapor deposition of BCl3–NH3–SiCl4–H2–Ar system. J. Wuhan Univ. Technol., Mater. Sci. Ed. 30, 951 (2015).
20. Li, Z.: Process and structure of SiBN interphase manufactured by CVD/CVI. Master thesis, Northwestern Polytechnical University, Xi’an, P.R. China, 2014.
21. Li, B., Zhang, C.R., Cao, F., Wang, S.Q., Li, J.S., and Chen, B.: Effects of curing atmosphere pressure on properties of silica fibre reinforced silicon–boron nitride matrix composites derived from precursor infiltration and pyrolysis. Mater. Technol. 22, 81 (2007).
22. Li, B., Zhang, C-R., Cao, F., Wang, S-Q., Chen, B., and Li, J-S.: Effects of fiber surface treatments on mechanical properties of T700 carbon fiber reinforced BN–Si3N4 composites. Mater. Sci. Eng., A 471, 169 (2007).
23. Jiang, Y.G., Zhang, C.R., Cao, F., Wang, S.Q., Hu, H.F., and Cao, Y.B.: Effects of thermal load on mechanical properties and microstructures of 3D SiO2f /Si3N4–BN composites using polyborosilazane. Mater. Sci. Eng., A 487, 597 (2008).
24. Jiang, Y.G., Zhang, C.R., Cao, F., Wang, S.Q., Hu, H.F., and Qi, G.J.: Fabrication of high performance 2.5D SiO2f /Si3N4–BN composites for high-temperature application. Adv. Eng. Mater. 9, 114 (2007).
25. Jin, S.Y., Guo, K.K., Qi, H.M., Zhu, Y.P., and Wang, F.: High yield polyborosilazane precursor for SiBN ceramics. Adv. Mater. Res. 1004–1005, 409 (2014).
26. Peng, Y.Q., Han, K.Q., Zhao, X., Wang, Z.H., Deng, Z.H., Liu, Z.Q., Zhang, J., Li, X.D., Sun, Z.Y., and Yu, M.H.: Preparing continuous SiBN ceramic fiber from precursor polymer of N-methylpolyborosilazanes. Presented at the 18th International Conference on Composites Materials, ICCM 2011, International Committee on Composite Materials, Vancouver, Canada, 2011.
27. Baldus, H-P. and Passing, G.: Studies on SiBN(C)-ceramics: Oxidation- and crystallization behavior lead the way to applications. MRS Online Proc. Libr. 346, 617 (1994).
28. Heinemann, D., Assenmacher, W., Mader, W., Kroschel, M., and Jansen, M.: Structural characterization of amorphous ceramics in the system Si–B–N–(C) by means of transmission electron microscopy methods. J. Mater. Res. 14, 3746 (1999).
29. Naslain, R.: Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: An overview. Compos. Sci. Technol. 64, 155 (2004).
30. Liu, X.F., Zhang, L.T., Liu, Y.S., Ye, F., and Yin, X.W.: Microstructure and the dielectric properties of SiCN–Si3N4 ceramics fabricated via LPCVD/CVI. Ceram. Int. 40, 5097 (2014).
31. Liu, X., Zhang, L., Liu, Y., Ye, F., and Yin, X.: Thermodynamic calculations on the chemical vapor deposition of Si–C–N from the SiCl4–NH3–C3H6–H2–Ar system. Ceram. Int. 39, 3971 (2013).
32. Zuo, X., Zhang, L., Liu, Y., Li, S., and Cheng, L.: Effect of deposition temperature on dynamics and mechanism of deposition for Si–B–C ceramic from BCl3/SiCH3Cl3/H2 precursor. J. Mater. Sci. Technol. 28, 793 (2012).
33. Hirai, T., Goto, T., and Sakai, T.: Preparation of amorphous Si3N4–BN composites by chemical vapor deposition. In Emergent Process Methods for High-Technology Ceramics, Davis, R., Palmour, H. III, and Porter, R., eds. (Springer US, New York, 1984); p. 347.
34. Besmann, T.M.: Thermodynamic analysis of the chemical vapor deposition of composite 〈Si3N4〉–〈BN〉 coatings. J. Am. Ceram. Soc. 69, 69 (1986).
35. Meloni, G., Viswanathan, R., and Gingerich, K.A.: Experimental and theoretical investigations of the structure and the stability of the BNSi molecule. J. Chem. Phys. 111, 9325 (1999).
36. Pattanaik, A. and Sarin, V.: Basic principles of CVD thermodynamics and kinetics. Chem. Vap. Deposition 2, 23 (2001).
37. Ingo, G.M., Zacchetti, N., Dellasala, D., and Coluzza, C.: X-ray photoelectron-spectroscopy investigation on the chemical-structure of amorphous-silicon nitride (a-Sinx). J. Vac. Sci. Technol., A 7, 3048 (1989).
38. Xue, J., Yin, X., Ye, F., Zhang, L., Cheng, L., and Bessman, T.: Thermodynamic analysis on the codeposition of SiC–Si3N4 composite ceramics by chemical vapor deposition using SiCl4–NH3–CH4–H2–Ar mixture gases. J. Am. Ceram. Soc. 96, 979 (2013).
39. Liu, Y., Liu, X., Ye, F., Zhang, L., Cheng, L., and Yin, X.: Thermodynamic calculations and kinetic verifications on the chemical vapor deposition process of Si–C–N ceramic from the SiCl3CH3–NH3–H2–Ar precursors. Ceram. Int. 40, 15831 (2014).
40. Senemaud, C., Drisskhodja, M., Gheorghiu, A., Harel, S., Dufour, G., and Roulet, H.: Electronic-structure of silicon–nitride studied by both soft-X-ray spectroscopy and photoelectron-spectroscopy. J. Appl. Phys. 74, 5042 (1993).
41. Polo, M.C., Martínez, E., Esteve, J., and Andújar, J.L.: Preparation of B–C–N thin films by r.f. plasma assisted CVD. Diamond Relat. Mater. 7, 376 (1998).
42. Shulga, Y.M. and Loryan, V.E.: Irs, X-ray photoelectron-spectroscopy and X-ray phase-analysis of the structure of composite formed during boron powders and silicon dioxide mixture combustion in gaseous nitrogen (self-distributing high-temperature synthesis mode). Zh. Neorg. Khim. 39, 1096 (1994).
43. Gouin, X., Grange, P., Bois, L., Lharidon, P., and Laurent, Y.: Characterization of the nitridation process of boric-acid. J. Alloys Compd. 224, 22 (1995).
44. Brainard, W.A. and Wheeler, D.R.: An XPS study of the adherence of refractory carbide silicide and boride rf-sputtered wear-resistant coatings. J. Vac. Sci. Technol. 15, 1800 (1978).
45. Burke, A., Brown, C., Bowling, W., Glaub, J., Kapsch, D., Love, C., Whitaker, R., and Moddeman, W.: Ignition mechanism of the titanium–boron pyrotechnic mixture. Surf. Interface Anal. 11, 353 (1988).
46. Park, J.J., Komura, O., and Yamakawa, A.: Change of crystal phases and microstructure of amorphous Si–C–N powder by hot pressing. J. Am. Ceram. Soc. 81, 2253 (1998).
47. Guifang, H.: Fundamental manufacturing techniques by CVI route for continuous fiber reinforced silicon nitride matrix composites. Ph.D. thesis, Northwestern Polytechnical University, Xi’an, P.R. China, 2008.
48. Cai, Y., Zimmermann, A., Prinz, S., and Aldinger, F.: Crystallization behavior of polymer-derived Si–B–C–N ceramics in a high-pressure nitrogen environment. J. Mater. Res. 17, 2765 (2002).
49. Cheng, Y., Yin, X.W., Liu, Y.S., Li, S.W., Cheng, L.F., and Zhang, L.T.: BN coatings prepared by low pressure chemical vapor deposition using boron trichloride–ammonia–hydrogen–argon mixture gases. Surf. Coat. Technol. 204, 2797 (2010).
50. Friess, M., Bill, J., Golczewski, J., Zimmermann, A., Aldinger, F., Riedel, R., and Raj, R.: Crystallization of polymer-derived silicon carbonitride at 1873 K under nitrogen overpressure. J. Am. Ceram. Soc. 85, 2587 (2002).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed