Skip to main content Accessibility help

Thermodynamic limitations for alkali metals in Cu(In,Ga)Se2

  • Dimitrios Hariskos (a1) and Michael Powalla (a1)
  • Please note a correction has been issued for this article.


The efficiency of Cu(In,Ga)Se2 (CIGS)-based solar cells could be continuously increased up to 22.6% by employing alkali metal dopants like Na, K, Rb, and Cs. The alkali metals are supplied to the CIGS layer from the glass substrate during deposition, from precursor layers or by a post deposition treatment. The alkali metal distribution in CIGS is not homogenous. Independently of the alkali metals used, their concentration at grain boundaries is much higher than that inside the grains. In this contribution, we discuss thermodynamic limitations for alkali metals in CIGS and show that in higher concentrations they are responsible for secondary phase separation. Applying the concept of immiscibility of phases for alkali metals in CIGS, we suggest how segregation at grain boundaries, formation of clusters in CIGS grains, sporadic formation of microstructures in the CIGS layer (hotspots, nodules), and separation of secondary phases with ordered structures can be interpreted.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Gary L. Messing

This paper has been selected as an Invited Feature Paper.



Hide All
1. Jackson, P., Wuerz, R., Hariskos, D., Lotter, E., Witte, W., and Powalla, M.: Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi RRL 10, 583586 (2016).
2. Solar Frontier: Press release (2017). Available at: (accessed February 27, 2017).
3. Solibro: Press release (2017). Available at: (accessed January, 2017).
4. Singh, U.P. and Patra, S.P.: Progress in polycrystalline thin-film Cu(In,Ga)Se2 solar cells. Int. J. Photoenergy, 2010, Article ID 468147 (2010). doi: 10.1155/2010/468147.
5. Abou-Ras, D., Wagner, S., Stanbery, B.J., Schock, H-W., Scheer, R., Stolt, L., Siebentritt, S., Lincot, D., Eberspacher, C., Kushiya, K., and Tiwari, A.N.: Innovation highway: Breakthrough milestones and key developments in chalcopyrite photovoltaics from a retrospective viewpoint. Thin Solid Films 633, 212 (2017).
6. Niki, S., Contreras, M., Repins, I., Powalla, M., Kushiya, K., Ishizuka, S., and Matsubara, K.: CIGS absorbers and processes. Prog. Photovoltaics 18, 453466 (2010).
7. Shafarman, W.N., Siebentritt, S., and Stolt, L.: Cu(InGa)Se2 Solar Cells. In Handbook of Photovoltaic Science and Engineering, 2nd ed., Luque, A. and Hegedus, S., eds. (John Wiley & Sons, Chippenham, Wiltshire, U.K., 2011); pp. 546599.
8. Kodigala, S.R., ed.: Cu(In1−x Ga x )Se2 and CuIn(Se1−x S x )2 thin film solar cells. In Thin Films and Nanostructures (Book Series), Vol. 35 (Academic Press, U.K., 2010); pp. 2685.
9. Scheeer, R. and Schock, H.W.: Chalcogenide Photovoltaics, 1st ed. (WILEY-VCH Verlag & Co. KGaA, Singapore, 2011).
10. National Renewable Energy Laboratory NREL. Available at: (accessed September 12, 2017).
11. Mickelsen, R.A. and Chen, W.S.: Development of a 9.4% efficient thin-film CuInSe2/CdS solar cell. In Rec. 15th IEEE Photovoltaic Spec. Conf., Kissimmee, Florida, May 12–15 (IEEE, New York, 1981); pp. 800804.
12. Klenk, R., Walter, T., Schock, H-W., and Cahen, D.: A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation. Adv. Mater. 5, 114119 (1993).
13. Chen, W.S., Stewart, J.M., Stanbery, B.J., Devaney, W.E., and Mickelsen, R.A.: Development of thin film polycrystalline CuIn1−x Ga x Se2 solar cells. In Rec. 19th IEEE Photovoltaic Spec. Conf., New Orleans, Louisiana, May 4–8 (IEEE, New York, 1987); pp. 14451447.
14. Kapur, V.K., Choudary, U.V., and Chu, A.K.P.: Process of forming a compound semiconductive material. US Patent No. 4,581,108, 1986.
15. Mitchell, K., Eberspacher, C., Ermer, J., and Pier, D.: Single and tandem junction CuInSe2 cell and module technology. In Rec. 20th IEEE Photovoltaic Spec. Conf., Las Vegas, Nevada, September 26–30 (IEEE, New York, 1988); pp. 13841389.
16. Jensen, C.L., Tarrant, D.E., Ermer, J.H., and Pollock, G.A.: The role of Gallium in CuInSe2 solar cells fabricated by a two stage method. In Rec. 23rd IEEE Photovoltaic Spec. Conf., Louisville, Kentucky, May 10-14 (IEEE, New York, 1993); pp. 577580.
17. Mitchell, K.W., Eberspacher, C., Ermer, J.H., Pauls, K.L., and Pier, D.N.: CuInSe2 cells and modules. IEEE Trans. Electron Devices 37, 410417 (1990).
18. Hedström, J., Ohlsén, H., Bodegård, M., Kylner, A., Stolt, L., Hariskos, D., Ruckh, M., and Schock, H.W.: ZnO/CdS/Cu(In,Ga)Se2 Thin film solar cells with improved performance. In Rec. 23rd IEEE Photovoltaic Spec. Conf., Louisville Kentucky, May 10–14 (IEEE, New York, 1993); pp. 364371.
19. Potter, R.R.: Enhanced photocurrent ZnO/CdS/CuInSe2 solar cells. Sol. Cells 16, 521527 (1986).
20. Kessler, J., Velthaus, K.O., Ruckh, M., Laichinger, R., Schock, H.W., Lincot, D., Ortega, R., and Vedel, J.: Chemical bath deposition of CdS on CuInSe2, etching effects and growth kinetics. In Proc. 6th Int. Photovoltaic Sci. Eng. Conf. (PVSEC-6), New Delhi, India, February 10–14, Das, B.K. and Singh, S.N., eds. (Oxford & Ibh Publishing Co. Pvt. Ltd., New Delhi, 1992); pp. 10051010.
21. Deveney, W.E., Chen, W.S., Stewart, J.M., and Gilette, R.B.: High efficiency CuInSe2 and CuInGaSe2 based cells and materials research. In Final Technical Progress Report for the Contract ZL-8-06031-8, Period 1987–1989 (Boing Electronics High Technology Center, Seattle, Washington, 1990); pp. 1719.
22. Ahrenkiel, R.K., Kazmerski, L.L., Matson, R.J., Osterwald, C., Massopust, T.P., Mickelsen, R.A., and Chen, W.S.: Heterojunction formation in (CdZn)S/CulnSe2 ternary solar cells. Appl. Phys. Lett. 43, 658660 (1983).
23. Mickelsen, R.A. and Chen, W.: Polycrystalline thin-film CuInS2 solar cells. In Rec. 16th IEEE Photovoltaic Spec. Conf., San Diego, California, September 27–30 (IEEE, New York, 1982); pp. 781785.
24. Goedecke, T., Haalboom, T., and Ernst, F.: Phase equilibria of Cu–In–Se. I. Stable states and nonequilibrium states of the In2Se3–Cu2Se subsystem. Z. Metallkd. 91, 622634 (2000).
25. Beilharz, C.: Charakterisierung von aus der Schmelze gezüchteten Kristallen in den Systemen Kupfer–Indium–Selen und Kupfer–Indium–Gallium–Selen für photovoltaische Anwendungen. Ph.D. dissertation, Shaker Verlag, Aachen, 1999.
26. Stanbery, B.J.: Copper indium selenides and related materials for photovoltaic devices. Crit. Rev. Solid State Mater. Sci. 27, 73117 (2002).
27. Contreras, M.A., Tuttle, J.R., Gabor, A., Tennant, A., Ramanathan, K., Asher, S., Franz, A., Keane, J., Wang, L., Scofield, J., and Noufi, R.: High efficiency Cu(In,Ga)Se2-based solar cells: Processing of novel absorber structures. In Rec. 24th IEEE Photovoltaics Spec. Conf. (1st WCPEC), Waikoloa, Hawaii, December 5–9 (IEEE, New York, 1994); pp. 6875.
28. Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B., and Noufi, R.: 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovoltaics 16, 235239 (2008).
29. Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R., Wischmann, W., and Powalla, M.: New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovoltaics 19, 894897 (2011).
30. Tanaka, Y., Akema, N., Morishita, T., Okumura, D., and Kushiya, K.: Improvement of V OC upward of 600 mV/cell with CIGS-based absorber prepared by selenization/sulfurization. In Proc. 17th Eur. Photovoltaic Sol. Energy Conf., Munich, Germany, October 22–26, McNelis, B., Palz, W., Ossenbrink, H.A., and Helm, P., eds. (WIP, Munich, Germany, 2001); pp. 989994.
31. Palm, J., Probst, V., and Karg, F.H.: Second generation CIS solar modules. Sol. Energy 77, 757765 (2004).
32. Rudmann, O.D. and Tiwari, A.N.: Verfahren zur Herstellung einer Verbindungshalbleiterschicht mit Alkalizusatz, Patent DE 102 59 258 B4 2006.03.16, December 11, 2002.
33. Chirilă, A., Reinhard, P., Pianezzi, F., Bloesch, P., Uhl, A.R., Fella, C., Kranz, L., Keller, D., Gretener, C., Hagendorfer, H., Jaeger, D., Erni, R., Nishiwaki, S., Buecheler, S., and Tiwari, A.N.: Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat. Mater. 12, 11071111 (2013).
34. Jackson, P., Hariskos, D., Wuerz, R., Wischmann, W., and Powalla, M.: Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%. Phys. Status Solidi RRL 8, 219222 (2014).
35. Lundberg, O., Wallin, E., Gusak, V., Södergren, S., Chen, S., Lotfi, S., Chalvet, F., Malm, U., Kaihovirta, N., Mende, P., Jaschke, G., Kratzert, P., Joel, J., Skupinski, M., Lindberg, P., Jarmar, T., Lundberg, J., Mathiasson, J., and Stolt, L.: Improved CIGS modules by KF post deposition treatment and reduced cell-to-module losses. In Rec. 43rd IEEE Photovoltaic Spec. Conf., Portland, Oregon, June 5–10 (IEEE, New York, 2016); pp. 12931296.
36. Jackson, P., Hariskos, D., Wuerz, R., Kiowski, O., Bauer, A., Friedlmeier, T.M., and Powalla, M.: Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. Phys. Status Solidi RRL 9, 2831 (2015).
37. Kamada, R., Yagioka, T., Adachi, S., Handa, A., Tai, K.F., Kato, T., and Sugimoto, H.: New world record Cu(In,Ga)(Se,S)2 thin film solar cell efficiency beyond 22%. In Rec. 43rd IEEE Photovoltaic Spec. Conf. (2016); pp. 12871291.
38. Kato, T.: Cu(In,Ga)(Se,S)2 solar cell research in solar Frontier: Progress and current status. Jpn. J. Appl. Phys. 56, 04CA02 (2017).
39. Salomé, P.M.P., Rodriguez-Alvarez, H., and Sadewasser, S.: Incorporation of alkali metals in chalcogenide solar cells. Sol. Energy Mater. Sol. Cells 143, 920 (2015).
40. Cojocaru-Mirédin, O., Choi, P., Wuerz, R., and Raabe, D.: Atomic-scale distribution of impurities in CuInSe2-based thin-film solar cells. Ultramicroscopy 111, 552556 (2011).
41. Cadel, E., Barreau, N., Kessler, J., and Pareige, P.: Atom probe study of sodium distribution in polycrystalline Cu(In,Ga)Se2 thin film. Acta Mater. 58, 26342637 (2010).
42. Vilalta-Clemente, A., Castro, C., Raghuwanshi, M., Duguay, S., Cadel, E., Pareige, P., Jackson, P., Hariskos, D., Wuerz, R., and Witte, W.: Distribution of alkali elements in Cu(In,Ga)Se2 solar cells on a nanometer scale. Presented at the Symp. E, Eur. Mater. Res. Soc. Meet. (EMRS), Strasburg, France, May 22–26, 2017 (EMRS, 2017), Symp. E, No E.III.3. (2017).
43. Cahen, D. and Noufi, R.: Free energies and enthalpies of possible gas phase and surface reactions for preparation of CuInSe2 . J. Phys. Chem. Solids 53, 9911005 (1992).
44. Guillemoles, J-F., Kronik, L., Cahen, D., Rau, U., Jasenek, A., and Werner Schock, H.: Stability issues of Cu(In,Ga)Se2-based solar cells. J. Phys. Chem. B 104, 48494862 (2000).
45. Guillemoles, J.F.: Stability of Cu(In,Ga)Se2 solar cells: A thermodynamic approach. Thin Solid Films 361–362, 338345 (2000).
46. Guillemoles, J.F.: The puzzle of Cu(In,Ga)Se2 (CIGS) solar cells stability. Thin Solid Films 403–404, 405409 (2002).
47. Wei, S-H., Zhang, S.B., and Zunger, A.: Effects of Na on the electrical and structural properties of CuInSe2 . J. Appl. Phys. 85, 72147218 (1999).
48. Pohl, J. and Albe, K.: Thermodynamics and kinetics of the copper vacancy in CuInSe2, CuGaSe2, CuInS2, and CuGaS2 from screened-exchange hybrid density functional theory. J. Appl. Phys. 108, 023509 (2010); J. Appl. Phys. 110, 109905 (2011).
49. Persson, C., Zhao, Y-J., Lany, S., and Zunger, A.: n-Type doping of CuInSe2 and CuGaSe2 . Phys. Rev. B 72, 035211 (2005).
50. Malitckaya, M., Komsa, H-P., Havu, V., and Puska, M.J.: First-principles modeling of point defects and complexes in thin-film solar-cell absorber CuInSe2 . Adv. Electron. Mater. 3, 1600353 (2017).
51. Rudmann, D.: Effects of sodium on growth and properties of Cu(In,Ga)Se2 thin films and solar cells. Ph.D. dissertation, Swiss Federal Institute of Technology, Zürich, 2004.
52. Oikkonen, L.E., Ganchenkova, M.G., Seitsonen, A.P., and Nieminen, R.M.: Effect of sodium incorporation into CuInSe2 from first principles. J. Appl. Phys. 114, 083503 (2013).
53. Alling, B., Högberg, H., Armiento, R., Rosen, J., and Hultman, L.: A theoretical investigation of mixing thermodynamics, age hardening potential, and electronic structure of ternary M11−x M2 x B2 alloys with A|B2 type structure. Sci. Rep. 5, 09888 (2015).
54. Provatas, N. and Elder, K.: Phase-Field Methods in Material Science and Engineering (Wiley VCH, Singapore, 2010).
55. Balluffi, R.W., Allen, S.M., and Carter, W.C.: Kinetics of Materials (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2005).
56. Schaftenaar, H.P.C.: Theory and Examples of Spinodal Decomposition in a Variety of Materials (Utrecht University, The Netherlands, 2008).
57. Porter, D.A., Easterling, K.E., and Sherif, M.Y.: Phase Transformations in Metals and Alloys, 3rd ed. (CRC Press, Boca Raton FL, USA, 2009).
58. Holder, A.M., Siol, S., Ndione, P.F., Peng, H., Deml, A.M., Matthews, B.E., Schelhas, L.T., Toney, M.F., Gordon, R.G., Tumas, W., Perkins, J.D., Ginley, D.S., Gorman, B.P., Tate, J., Zakutayev, A., and Lany, S.: Novel phase diagram behavior and materials design in heterostructural semiconductor alloys. Sci. Adv. 3, e1700270 (2017).
59. Chan, J.W. and Charles, R.J.: The initial stages of phase separation in glasses. Phys. Chem. Glasses 6, 181191 (1965).
60. Sangster, J. and Pelton, A.D.: The Na–Se (sodium–selenium) system. J. Phase Equilib. 18, 185189 (1997).
61. Sangster, J. and Pelton, A.D.: The K–Se (potassium–selenium) system. J. Phase Equilib. 18, 177180 (1997).
62. Sangster, J. and Pelton, A.D.: The Rb–Se (rubidium–selenium) system. J. Phase Equilib. 18, 190193 (1997).
63. Sangster, J. and Pelton, A.D.: The Cs–Se (cesium–selenium) system. J. Phase Equilib. 18, 173176 (1997).
64. Hoppe, R., Lidecke, W., and Frorath, F-C.: Zur Kenntnis von NaInS2 und NaInSe2 . Z. Anorg. Allg. Chem. 309, 4954 (1961).
65. Schlosser, M., Reiner, C., Deiseroth, H-J., and Kienle, L.: K2In12Se19, a complex new structure type based on icosahedral units of Se2− . Eur. J. Inorg. Chem. 2001, 22412247 (2001).
66. Peterson, G.E. and Bridenbaugh, P.M.: Nuclear quadrupole coupling constants and charge distributions in ionic crystals of the NaFeO2 type. J. Chem. Phys. 51, 2610 (1969).
67. Krebs, B.: Thio- und Selenoverbindungen von Hauptgruppenelementen–neue anorganische Oligomere und Polymere. Angew. Chem. 95, 113134 (1983).
68. Huanga, F.Q., Denga, B., Ellis, D.E., and Ibers, J.A.: Preparation, structures, and band gaps of RbInS2 and RbInSe2 . J. Solid State Chem. 178, 21282132 (2005).
69. Do, J. and Kanatzidis, M.G.: The one-dimensional polyselenide compound CsGaSe3 . Z. Anorg. Allg. Chem. 629, 621624 (2003).
70. Friedrich, D., Schlosser, M., and Pfitzner, A.: Synthesis and structural characterization of Cs2Ga2Se5 . Z. Anorg. Allg. Chem. 640(5), 826829 (2014).
71. Zellner, M.B., Birkmire, R.W., Eser, E., Shafarman, W.N., and Chen, J.G.: Determination of activation barriers for the diffusion of sodium through CIGS thin-film solar cells. Prog. Photovoltaics 11, 543548 (2003).
72. Yoon, J-H., Seong, T-Y., and Jeong, J.: Effect of a Mo back contact on Na diffusion in CIGS thin film solar cells. Prog. Photovoltaics 21, 5863 (2013).
73. Laemmle, A., Wuerz, R., Schwarz, T., Cojocaru-Mirédin, O., Choi, P.P., and Powalla, M.: Investigation of the diffusion behavior of sodium in Cu(In,Ga)Se2 layers. J. Appl. Phys. 115, 154501 (2014).
74. Abou-Ras, D., Schmidt, S.S., Caballero, R., Unold, T., Schock, H-W., Koch, C.T., Schaffer, B., Schaffer, M., Choi, P-P., and Cojocaru-Mirédin, O.: Confined and chemically flexible grain boundaries in polycrystalline compound semiconductors. Adv. Energy Mater. 2, 992998 (2012).
75. Choi, P.P., Cojocaru-Mirédin, O., Wuerz, R., and Raabe, D.: Comparative atom probe study of Cu(In,Ga)Se2 thin-film solar cells deposited on soda-slime glass and mild steel substrates. J. Appl. Phys. 110, 124513 (2011).
76. Contreras, M.A., Egaas, B., Dippo, P., Webb, J., Granata, J., Ramanathan, K., Asher, S., Swartzlander, A., and Noufi, R.: On the role of Na and modifications to Cu(In,Ga)Se2 absorber materials using thin MF (M = Na, K, Cs) precursor layers. In Rec. 26th IEEE Photovoltaic Spec. Conf., Anaheim, California, September 29-October 3 (IEEE, New York, 1997); pp. 359362.
77. Database of the International Centre for Diffraction Data, JCPDS 01-074-0136.
78. Lin, Y.C., Shi, Z.H., Shen, C.H., and Chen, Y.L.: Na-doped Mo target sputtering for CIGS thin film solar cells on stainless steel substrate. Int. J. Appl. Phys. Math. 3, 157160 (2013).
79. Lee, J.W., Kaczynski, R., Van Alsburg, J., Sang, B., Schoop, U., and Britt, J.: Effect of three-stage growth modification on a CIGS microstructure. IEEE J. Photovolt. 6, 16451649 (2016).
80. Nadenau, V., Lippold, G., Rau, U., and Schock, H.W.: Sodium induced secondary phase segregations in CuGaSe2 thin films. J. Cryst. Growth 233, 1321 (2001).
81. Balboul, M.R., Turcu, M., Kötschau, I.M., Rau, U, and Schock, H.W.: Sodium induced phase segregations in CuGaSe2 and CuInSe2 thin films. In Proc. 17th Eur. Photovoltaic Sol. Energy Conf., Munich Germany, October 22–26, McNelis, B., Palz, W., Ossenbrink, H.A., and Helm, P., eds. (WIP, Munich, Germany, 2001); pp. 10151018.
82. Song, X., Caballero, R., Félix, R., Gerlach, D., Kaufmann, C.A., Schock, H-W., Wilks, R.G., and Bär, M.: Na incorporation into Cu(In,Ga)Se2 thin-film solar cell absorbers deposited on polyimide: Impact on the chemical and electronic surface structure. J. Appl. Phys. 111, 034903 (2012).
83. Schmid, D., Ruckh, M., Grunwald, F., and Schock, H.W.: Chalcopyrite defect chalcopyrite heterojunctions on the basis of CulnSe2 . J. Appl. Phys. 73, 2902 (1993).
84. Contreras, M.A. and Noufi, R.: Chalcopyrite Cu(In,Ga)Se2 and defect-chalcopyrite Cu(In,Ga)3Se5 materials in photovoltaic P–N junctions. J. Cryst. Growth 174, 283288 (1997).
85. Mönig, H., Fischer, C-H., Grimm, A., Johnson, B., Kaufmann, C.A., and Caballero, R.: Surface Cu-depletion of Cu(In,Ga)Se2 thin films: Further experimental evidence for a defect-induced surface reconstruction. J. Appl. Phys. 107, 113540 (2010).
86. Reinhard, P., Bissig, B., Pianezzi, F., Hagendorfer, H., Sozzi, G., Menozzi, R., Gretener, C., Nishiwaki, S., Buecheler, S., and Tiwari, A.N.: Alkali-templated surface nanopatterning of chalcogenide thin films: A novel approach toward solar cells with enhanced efficiency. Nano Lett. 15, 33343340 (2015).
87. Handick, E., Reinhard, P., Wilks, R.G., Pianezzi, F., Félix, R., Gorgoi, M., Kunze, T., Buecheler, S., Tiwari, A.N., and Bär, M.: NaF/KF post-deposition treatments and their influence on the structure of Cu(In,Ga)Se2 absorber surfaces. In Rec. 43rd IEEE Photovoltaic Spec. Conf., Portland, Oregon, June 5–6 (IEEE, New York, 2016); pp. 017021.
88. Malitckaya, M., Komsa, H-P., Havu, V., and Puska, M.: Effect of alkali metal atom doping on CuInSe2-based solar cell absorber. J. Phys. Chem. C 121, 1551615528 (2017).
89. Couzinie-Devy, F., Cadel, E., Barreau, N., Arzel, L., and Pareige, P.: Atom probe study of Cu-poor to Cu-rich transition during Cu(In,Ga)Se2 growth. Appl. Phys. Lett. 99, 232108 (2011).
90. Hanna, G.: Determination and influence of Na supply and Se flux during growth of Cu(In,Ga)Se2 thin films. Ph.D. dissertation, University of Stuttgart, Germany, 2004.
91. Colombara, D., Berner, U., Ciccioli, A., Malaquias, J.C., Bertram, T., Crossay, A., Schöneich, M., Meadows, H.J., Regesch, D., Delsante, S., Gigli, G., Valle, N., Guillot, J., Adib, B.E., Grysan, P., and Dale, P.J.: Deliberate and accidental gas-phase alkali doping of chalcogenide semiconductors: Cu(In,Ga)Se2 . Sci. Rep. 7, 43266 (2017).
92. Yuan, Z.K., Chen, S., Xie, Y., Park, J.S., Xiang, H., Gong, X.G., and Wei, S.H.: Na-diffusion enhanced p-type conductivity in Cu(In,Ga)Se2: A new mechanism for efficient doping in semiconductors. Adv. Energy Mater. 6, 1601191 (2016).


Related content

Powered by UNSILO

Thermodynamic limitations for alkali metals in Cu(In,Ga)Se2

  • Dimitrios Hariskos (a1) and Michael Powalla (a1)
  • Please note a correction has been issued for this article.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

A correction has been issued for this article: