Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T18:36:21.924Z Has data issue: false hasContentIssue false

Thermochemical study of trivalent-doped ceria systems: CeO2–MO1.5 (M = La, Gd, and Y)

Published online by Cambridge University Press:  03 March 2011

Weiqun Chen
Affiliation:
NEAT ORU and Thermochemistry Facility, University of California at Davis, Davis, California, 95616-8779
Alexandra Navrotsky*
Affiliation:
NEAT ORU and Thermochemistry Facility, University of California at Davis, Davis, California, 95616-8779
*
a) Address all correspondence to this author. e-mail: anavrotsky@ucdavis.edu
Get access

Abstract

The formation enthalpies from the oxide end-members (ΔHf,ox) of the CeO2–MO1.5 (M = La, Gd, and Y) systems were determined by high temperature oxide melt drop solution calorimetry. In each system, ΔHf,ox is slightly positive over the investigated composition range with a maximum at a certain doping level. Above that concentration, ΔHf,ox decreases rapidly and stays almost constant. Such behavior is strikingly different from the strongly negative ΔHf,ox of the ZrO2–YO1.5 and HfO2–YO1.5 systems. The absence of substantial energetic stabilization in the CeO2–MO1.5 systems may be attributed to the large size of Ce4+, which has no preference for 7-coordination like the smaller Zr4+ or Hf4+ ions. The primary defect associates in CeO2–MO1.5 are proposed to be neutral trimers with oxygen vacancies nearest neighbor to the dopant cations. It is also suggested that the maximum ΔHf,ox (destabilization) of CeO2–MO1.5 is determined by the local site distortion rather than the global lattice deformation. The relatively stable region after the maximum ΔHf,ox may be attributed to the somewhat stabilizing long-range defect–defect interactions, which become effective above a certain doping level.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inaba, H., Tagawa, H.: Ceria-based solid electrolytes: Review. Solid State Ionics 83(1–2), 1 (1996).Google Scholar
2.Zhu, B.: Advantages of intermediate temperature solid oxide fuel cells for tractionary applications. J. Power Sources 93(1–2), 82 (2001).Google Scholar
3.Mogensen, M., Sammes, N.M., Tompsett, G.A.: Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129(1–4), 63 (2000).CrossRefGoogle Scholar
4.Sammes, N., Tompsett, G., Zhang, Y.J., Cartner, A., Torrens, R.: The structural and mechanical properties of (CeO2)1-x(GdO1.5)x electrolytes. Denki Kagaku 64(6), 674 (1996).CrossRefGoogle Scholar
5.Tschope, A., Liu, W., Flytzanistephanopoulos, M., Ying, J.Y.: Redox activity of nonstoichiometric cerium oxide-based nanocrystalline catalysts. J. Catal. 157(1), 42 (1995).Google Scholar
6.Yao, H.C., Yao, Y.F.Y.: Ceria in automotive exhaust catalysts. 1. Oxygen storage. J. Catal. 86(2), 254 (1984).Google Scholar
7.Faber, J., Geoffroy, C., Roux, A., Sylvestre, A., Abelard, P.: A systematic investigation of the dc-electrical conductivity of rare-earth–doped ceria. Appl. Phys. A Mater. Sci. Processing 49(3), 225 (1989).Google Scholar
8.Yahiro, H., Eguchi, K., Arai, H.: Electrical properties and reducibilities of ceria rare-earth oxide systems and their application to solid oxide fuel cell. Solid State Ionics 36(1–2), 71 (1989).CrossRefGoogle Scholar
9.Chen, W.Q., Lee, T.A., Navrotsky, A.: Enthalpy of formation of yttria-doped ceria. J. Mater. Res. 20(1), 144 (2005).Google Scholar
10.Navrotsky, A.: Progress and new directions in high-temperature calorimetry. Phys. Chem. Miner. 2(1–2), 89 (1977).Google Scholar
11.Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24(3), 222 (1997).Google Scholar
12.Helean, K.B., Navrotsky, A.: Oxide melt solution calorimetry of rare earth oxides: Techniques, problems, cross-checks, successes. J. Therm. Anal. Calorim. 69(3), 751 (2002).Google Scholar
13.Cheng, J.H., Navrotsky, A.: Enthalpies of formation of LaBO3 perovskites (B = Al, Ga, Sc, and In). J. Mater. Res. 18(10), 2501 (2003).Google Scholar
14.Kim, D.J.: Lattice parameters, ionic conductivities, and solubility limits in fluorite structure MO2 oxide (M = Hf4+, Zr4+, Ce4+, Th4+, U4+) solid solutions. J. Am. Ceram. Soc. 72(8), 1415 (1989).CrossRefGoogle Scholar
15.Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32(SEP1) 751 (1976).Google Scholar
16.Bevan, D.J.M., Barker, W.W., Martin, R.L., Parks, T.C. Mixed oxides of the type MO2 (fluorite)-M2O3. Part 2: Nonstoichimetry in ternary rare-earth oxide systems, in Rare Earth Research, edited by Eyring, L. (Gordon & Breach, New York, 1965), p. 441.Google Scholar
17.Ralph, J.M., Killer, J.A. Enhancement of the ionic conductivity in ceria gadolinia solid solutions (SOFC electrolytes), in Proceedings of the Second European Solid Oxide Fuel Cell Forum (Oslo, Norway, 1996) p. 773.Google Scholar
18.Zhang, T.S., Hing, P., Huang, H.T., Kilner, J.: Ionic conductivity in the CeO2-Gd2O3 system (0.05 <= Gd/Ce <= 0.4) prepared by oxalate coprecipitation. Solid State Ionics 148(3–4), 567 (2002).Google Scholar
19.Grover, V., Tyagi, A.K.: Phase relations, lattice thermal expansion in CeO2-Gd2O3 system, and stabilization of cubic gadolinia. Mater. Res. Bull. 39(6), 859 (2004).Google Scholar
20.Dikmen, S., Shuk, P., Greenblatt, M.: Hydrothermal synthesis and properties of Ce1−xLaxO2−δ solid solutions. Solid State Ionics 126(1–2), 89 (1999).CrossRefGoogle Scholar
21.Putnam, R.L., Navrotsky, A., Cordfunke, E.H.P., Huntelaar, M.E.: Thermodynamics of formation of two cerium aluminum oxides, CeAlO3(s) and CeAl12O19.918(S), and cerium sesquioxide, Ce2O3(s) at T = 298.15 K. J. Chem. Thermodyn. 32(7), 911 (2000).CrossRefGoogle Scholar
22.Simoncic, P., Navrotsky, A.: Energetics of rare earth-doped hafnia. J. Mater. Res. (2006, accepted) .Google Scholar
23.Katagiri, H., Ishizawa, N., Marumo, F.: A new high-temperature modification of face-centered cubic Y2O3. Powder Diffr. 9, 60 (1993).Google Scholar
24.Swamy, V., Dubrovinskaya, N.A., Dubrovinsky, L.S.: High-temperature powder x-ray diffraction of yttria to melting point. J. Mater. Res. 14(2), 456 (1999).Google Scholar
25.Navrotsky, A., Benoist, L., Lefebvre, H.: Direct calorimetric measurement of enthalpies of phase transitions at 2000 °C– 2400 °C in yttria and zirconia. J. Am. Ceram. Soc. 88(10), 2942 (2005).Google Scholar
26.Lee, T.A., Navrotsky, A., Molodetsky, I.: Enthalpy of formation of cubic yttria-stabilized zirconia. J. Mater. Res. 18(4), 908 (2003).Google Scholar
27.Lee, T.A., Navrotsky, A.: Enthalpy of formation of cubic yttria-stabilized hafnia. J. Mater. Res. 19(6), 1855 (2004).CrossRefGoogle Scholar
28.Zacate, M.O., Minervini, L., Bradfield, D.J., Grimes, R.W., Sickafus, K.E.: Defect cluster formation in M2O3-doped cubic ZrO2. Solid State Ionics 128(1–4), 243 (2000).Google Scholar
29.Minervini, L., Zacate, M.O., Grimes, R.W.: Defect cluster formation in M2O3-doped CeO2. Solid State Ionics 116(3–4), 339 (1999).Google Scholar
30.Li, P., Chen, I.W., Pennerhahn, J.E.: Effect of dopants on zirconia stabilization: An x-ray absorption study. 1. Trivalent dopants. J. Am. Ceram. Soc. 77(1), 118 (1994).CrossRefGoogle Scholar
31.Li, P., Chen, I.W., Pennerhahn, J.E.: X-ray absorption studies of zirconia polymorphs. 2. Effect of Y2O3 dopant on ZrO2 structure. Phys. Rev. B 48(14), 10074 (1993).Google Scholar
32.Li, P., Chen, I.W., Pennerhahn, J.E., Tien, T.Y.: X-ray absorption studies of ceria with trivalent dopants. J. Am. Ceram. Soc. 74(5), 958 (1991).CrossRefGoogle Scholar
33.Hayashi, H., Sagawa, R., Inaba, H., Kawamura, K.: Molecular dynamics calculations on ceria-based solid electrolytes with different radius dopants. Solid State Ionics 131(3–4), 281 (2000).CrossRefGoogle Scholar
34.Butler, V., Catlow, C.R.A., Fender, B.E.F., Harding, J.H.: Dopant ion radius and ionic conductivity in cerium dioxide. Solid State Ionics 8(2),109 (1983).Google Scholar
35.Gerhardtanderson, R., Nowick, A.S.: Ionic conductivity of CeO2 with trivalent dopants of different ionic radii. Solid State Ionics 5, 547 (1981).Google Scholar
36.Wang, D.Y., Park, D.S., Griffith, J., Nowick, A.S.: Oxygen ion conductivity and defect interactions in yttria-doped ceria. Solid State Ionics 2(2), 95 (1981).CrossRefGoogle Scholar
37.Eguchi, K., Setoguchi, T., Inoue, T., Arai, H.: Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics 52(1–3),165 (1992).CrossRefGoogle Scholar
38.Yoshida, H., Deguchi, H., Miura, K., Horiuchi, M., Inagaki, T.: Investigation of the relationship between the ionic conductivity and the local structures of singly and doubly doped ceria compounds using EXAFS measurement. Solid State Ionics 140(3–4), 191 (2001).CrossRefGoogle Scholar
39.Ralph, J.M., Przydatek, J., Kilner, J.A., Seguelong, T.: Novel doping systems in ceria. Phys. Chem. Chem. Physics 101(9), 1403 (1997).Google Scholar
40.Wang, F.Y., Wan, B.Z., Cheng, S.F.: Study on Gd3+ and Sm3+ co-doped ceria-based electrolytes. J. Solid State Electrochem. 9(3), 168 (2005).Google Scholar