Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-05T22:03:14.448Z Has data issue: false hasContentIssue false

Thermal shock of porous silicon nitride with preferentially aligned grains

Published online by Cambridge University Press:  31 January 2011

L.J. Vandeperre
Affiliation:
Department of Materials, University of Cambridge, Cambridge CB2 3QZ, United Kingdom
Y. Inagaki
Affiliation:
Synergy Ceramics Laboratory, Nagoya, 463-8687, Japan
W.J. Clegg
Affiliation:
Department of Materials, University of Cambridge, Cambridge CB2 3QZ, United Kingdom
Get access

Abstract

We studied the thermal shock resistance of a silicon nitride containing elongated and preferentially aligned grains with different volume fractions of pores, ranging from 0 to 0.27. It was found that an increase in the volume fraction of pores decreased both the strength and the temperature through which the sample must be quenched to cause cracking. However, at intermediate values of the porosity (0.07), the temperature change required to cause cracking was much smaller than predicted. Observations of the resulting damage suggested that this had occurred because of the formation of cracks just underneath and parallel to the cooled surface of the sample that were able to change the direction of their growth. The extent of cracking was found to be only very weakly dependent on the volume fraction of pores, consistent with calculations of the variation of crack driving force within the sample.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Raj, R., J. Am. Ceram. Soc. 76, 2147 (1993).CrossRefGoogle Scholar
2.Liu, H., Lawn, B.R., and Hsu, S.M., J. Am. Ceram. Soc. 79, 1009 (1996).CrossRefGoogle Scholar
3.Trice, R.W. and Halloran, J.W., J. Am. Ceram. Soc. 82, 2633 (1999).CrossRefGoogle Scholar
4.Reichl, A. and Steinbrech, R.W., J. Am. Ceram. Soc. 71, C299 (1988).CrossRefGoogle Scholar
5.Steinbrech, R.W. and Schmenkel, O., J. Am. Ceram. Soc. 71, C271 (1988).CrossRefGoogle Scholar
6.Knehans, R. and Steinbrech, R., J. Mater. Sci. Lett. 1, 327.CrossRefGoogle Scholar
7.Inagaki, Y., Ohji, T., Kanzaki, S., and Shigegaki, Y., J. Am. Ceram. Soc. 83, 1807 (2000).CrossRefGoogle Scholar
8.Imamura, H., Hirao, K., Brito, M.E., Toriyama, M., and Kanzaki, S., J. Am. Ceram. Soc. 83, 495 (2000).CrossRefGoogle Scholar
9.Yang, J-F., in Fifth International Symposium on Synergy Ceramics (Fine Ceramics Research Association, Tokyo, Japan, 2001).Google Scholar
10.Yang, J-F., Ohji, T., Kanzaki, S., Diaz, A., and Hampshire, S., J. Am. Ceram. Soc. 85, 1512 (2002).CrossRefGoogle Scholar
11.Shigegaki, Y., Brito, M.E., Hirao, K., Toriyama, M., and Kanzaki, S., J. Am. Ceram. Soc. 80, 495 (1997).CrossRefGoogle Scholar
12.Yang, J-F., Zhang, G-J., and Ohju, T., J. Am. Ceram. Soc. 84, 1639 (2001).CrossRefGoogle Scholar
13.Davidge, R.W. and Tappin, G., Trans. Brit. Ceram. Soc. 66, 405 (1967).Google Scholar
14.Bahr, H.A., Fischer, G., and Weiss, H.J., J. Mater. Sci. 21, 2716 (1986).CrossRefGoogle Scholar
15.Vandeperre, L.J., Kristofferson, A., Carlstrom, E., and Clegg, W.J., J. Am. Ceram. Soc. 84, 104 (2001).CrossRefGoogle Scholar
16.Kingery, W.D., Introduction to Ceramics (John Wiley and Sons, New York, 1960), p. 781.Google Scholar
17.Evans, A.G. and Charles, E.A., J. Am. Ceram. Soc. 60, 22 (1977).CrossRefGoogle Scholar
18.Fett, T. and Munz, D., J. Am. Ceram. Soc. 75, 3133 (1992).CrossRefGoogle Scholar
19.Rice, R.W., Porosity of Ceramics, Materials Engineering. (Marcel Dekker, New York, 1998), p. 539.Google Scholar
20.Lankmans, F., in Departement Metaalkunde en Toegepaste Materiaalkunde (Katholieke Universiteit Leuven, Leuven, Belgium, 1997), p. 80.Google Scholar
21.Wang, J., in Department of Materials Science and Metallurgy (University of Cambridge, Cambridge, UK, 2001), p. 139.Google Scholar
22.Case, E.D. and Smyth, J.R., J. Mater. Sci. 16, 3215 (1981).CrossRefGoogle Scholar
23.Wang, J., Vandeperre, L.J., Stearn, R.J., and Clegg, W.J., in 7th European Ceramic Society Conference, edited by Kermel, C., Lardot, V., Libert, D., and Urbain, I. (Trans Tech Publications, Brugge, Belgium, 2001).Google Scholar
24.Peterson, I.M. and Tien, T-Y., J. Am. Ceram. Soc., 1995. 78, 2345.CrossRefGoogle Scholar
25.Hasselman, D.P.H., J. Am. Ceram. Soc. 52, 600 (1969).CrossRefGoogle Scholar
26.Li, J., Kong, X., Xie, Z., and Huang, Y., J. Am. Ceram. Soc. 82, 1576 (1999).CrossRefGoogle Scholar
27.Zhang, Y.H., Edwards, L., and Plumbridge, W.J., J. Am. Ceram. Soc. 81, 1861 (1998).CrossRefGoogle Scholar
28.Rouxel, T., Besson, J-L., Gault, C., Goursat, P., Leigh, M., and Hampshire, S., J. Mater. Sci. Lett. 8, 1158 (1989).CrossRefGoogle Scholar
29.Kendall, K., Proc. R. Soc. Lond. A 344, 287 (1975).Google Scholar