Skip to main content Accessibility help

Thermal profile shaping and loss impacts of strain annealing on magnetic ribbon cores

  • Richard Beddingfield (a1), Subhashish Bhattacharya (a1), Kevin Byerly (a2), Satoru Simizu (a3), Alex Leary (a4), Mike McHenry (a3) and Paul Ohodnicki (a5)...


The use of the advanced manufacturing technique of strain annealing for nanocomposite magnetic ribbons enables control of relative permeabilities and spatially dependent permeability profiles. Tuned permeability profiles enable enhanced control of the magnetic flux throughout magnetic cores, including the concentration or dispersion of the magnetic flux over specific regions. Due to the correlation between local core losses and temperature rises with the local magnetic flux, these profiles can be tuned at the component level for improved losses and reduced steady-state temperatures. We present analytical models for a number of assumed permeability profiles. This work shows significant reductions in the peak temperature rise with overall core losses impacted to a lesser extent. Controlled strain annealing profiles can also adjust the location of hotspots within a component for optimal cooling schemes. As a result, magnetic designs can have improved performance for a range of potential operating conditions.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to



Hide All
1.Steigerwald, R.L., De Doncker, R.W., and Kheraluwala, M.H.: A comparison of high power DC-to-DC soft-switched converter topologies. In Proceedings of 1994 IEEE Industry Applications Society Annual Meeting, Vol. 2 (IEEE, Denver, Colorado, 1994); p. 1090.
2.Iyer, V.M., Gulur, S., and Bhattacharya, S.: Hybrid control strategy to extend the ZVS range of a dual active bridge converter. In 2017 IEEE Applied Power Electronics Conference and Exposition (APEC) (IEEE, Tampa, Florida, 2017); p. 2035.
3.Beddingfield, R., Storelli, D., and Bhattacharya, S.: A novel dual voltage source converter for magnetic material characterization with trapezoidal excitation. In 2017 IEEE Applied Power Electronics Conference and Exposition (APEC) (IEEE, Tampa, Florida, 2017); p. 1659.
4.Beddingfield, R. and Bhattacharya, S.: Multi-parameter magnetic material characterization for high power medium frequency converters. In The Minerals, Metals & Materials Series (Springer, San Diego, California, 2017); p. 693.
5.Aronhime, N., Degeorge, V., Keylin, V., Ohodnicki, P., and McHenry, M.: The effects of strain-annealing on tuning permeability and lowering losses in Fe–Ni-based metal amorphous nanocomposites. JOM 69, 2164 (2017).
6.Leary, A., Keylin, V., Devaraj, A., DeGeorge, V., Ohodnicki, P., and McHenry, M.E.: Stress induced anisotropy in Co-rich magnetic nanocomposites for inductive applications. J. Mater. Res 31, 3089 (2016).
7.Leary, A., Ohodnicki, P., McHenry, M., and Keylin, V.: Tunable anisotropy of Co-based nanocomposites for magnetic field sensing and inductor applications. U.S. Patent App. 15/205,217, 2016.
8.Keylin, V., Ohodnicki, P., Leary, A., and McHenry, M.: Stress induced anisotropy in CoFeMn soft magnetic nanocomposites. J. App. Phys. 117, 17A338 (2015).
9.Leary, A., Ohodnicki, P., McHenry, M., Keylin, V., Huth, J., and Kernion, S.: Tunable anisotropy of Co-based nanocomposites for magnetic field sensing and inductor applications. U.S. Patent No. 20140338793A1, 2016.
10.Kernion, S., Ohodnicki, P. Jr., Grossmann, J., Leary, A., Shen, S., and Keylin, V.: Giant induced magnetic anisotropy in strain annealed Co-based nanocomposite alloys. Appl. Phys. Lett. 101, 102408 (2012).
11.Ohodnicki, P., Long, J., Laughlin, D., McHenry, M., Keylin, V., and Huth, J.: Composition dependence of field induced anisotropy in ferromagnetic (Co, Fe)89Zr7B4 and (Co, Fe)88Zr7B4Cu1 amorphous and nanocrystalline ribbons. J. App. Phys. 104, 113909 (2008).
12.Jiles, D. and Atherton, D.: Theory of ferromagnetic hysteresis. J. Magn. Magn Mater. 61, 48 (1986).
13.Brockmeyer, A. and Schulting, L.: Modeling of dynamic losses in magnetic material. In 5th European Conference on Power Electronics and. Applications, EPE’93, Vol. 3 (EPE Associations, Brighton, United Kingdom, 1993); p. 112.
14.Muhlethaler, J., Biela, J., Kolar, J.W., and Ecklebe, A.: Core losses under the DC bias condition based on Steinmetz parameters. IEEE Trans. Power Electron. 27, 953 (2012).
15.Muhlethaler, J., Biela, J., Kolar, J.W., and Ecklebe, A.: Improved core-loss calculation for magnetic components employed in power electronic systems. IEEE Trans. Power Electron. 27, 964 (2012).
16.Havez, L.: Contribution au Prototypage Virtuel 3D par Eléments Finis de Composants Magnétiques Utilisés en Electronique de Puissance. Ph.D. thesis, National Polytechnic Institute of Toulouse, Toulouse, France, 2016.
17.Cougo, B.: Optimal cross section shape of tape wound cores. Euro. Conf. Pow. Elec. App. 17, 1 (2015).
18.Kasap, S.: Essential Heat Transfer for Electrical Engineers (E-Book, Saskatchewan, CA, 2003).
19.Odendaal, W.G. and Ferreira, J.A.: A thermal model for high-frequency magnetic components. IEEE Trans. Ind. Appl. 35, 924 (1999).
20.Hilal, A., Raulet, M.A., and Martin, C.: Magnetic components dynamic modeling with thermal coupling for circuit simulators. IEEE Trans. Magn. 50, 1 (2014).
21.Das, A.K., Wei, Z., Vaisambhayana, S., Cao, S., Tian, H., Tripathi, A., and Kjær, P.: Thermal modeling and transient behavior analysis of a medium-frequency high-power transformer. In 43rd Annual Conference of the IEEE Industrial Electronics Society (IEEE, Beijing, China, 2017); p. 2213.
22.Laaidi, N., Belattar, S., and Elbaloutti, A.: Thermal and thermographical modeling of the rust effect in oil conduits. Eur. Conf. Non-Dest. Test. ECNDT 2010, 1.5.19 (2010).
23.3M Thermally Conductive Epoxy Adhesive TC-2810 3M: Electronics Materials Solutions Division. Technical Report, Electronics Materials Solutions Division, St. Paul, Minnesota, 2014.
24.Leary, A., Ohodnicki, P., and McHenry, M.: Soft magnetic materials in high-frequency, high-power conversion applications. JOM 64, 772 (2012).
25.Ridley, R. and Nace, A.: Modeling ferrite core losses. Switching Power. Mag. 2006, 1 (2006).
26.“L Material” Internet: Available at: (accessed December 10, 2017).
27.Xuewei, P., Prasanna, U.R., and Rathore, A.: Magnetizing-inductance-assisted extended range soft-switching three-phase AC-link current-fed dc/dc converter for low DC voltage applications. IEEE Trans. Power Electron. 28, 3317 (2013).
28.Kheraluwala, M., Gascoigne, R., Divan, D., and Baumann, E.: Performance characterization of a high-power dual active bridge DC-to-DC converter. IEEE Trans. Ind. Appl. 28, 1294 (1992).
29.Beddingfield, R., Vora, P., Storelli, D., and Bhattacharya, S.: Trapezoidal characterization of magnetic materials with a novel dual voltage test circuit. In 2017 IEEE Energy Conversion Congress and Exposition (ECCE) (IEEE, Cincinnati, Ohio, 2017); p. 439.
30.Steinmetz, C.P.: On the law of hysteresis. Trans. Am. Inst. Electr. Eng. 9, 164 (1892).
31.Herzer, G.: Nanocrystalline soft magnetic alloys. In Handbook of Magnetic Materials, Vol. 10, Buschow, K.H.J., ed. (Elsevier Science, Amsterdam, 1997); ch. 3, p. 415.
32.McHenry, M.E. and Laughlin, D.E.: Magnetic properties of metals and alloys. In Physical Metallurgy, 5th ed. (Elsevier Academic Press, Waltham, Massachusetts, 2014); ch. 19, pp. 18812008.
33.Bertotti, G.: General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 24, 621 (1988).
34.Kernion, S.J., Lucas, M.J., Horwath, J., Turgut, Z., Michel, E., Keylin, V., Huth, J., Leary, A.M., Shen, S., and McHenry, M.E.: Metal amorphous nanocomposite (MANC) alloy cores with spatially tuned perme-ability for advanced power magnetics applications. J. Appl. Phys. 113, 17A306 (2013).
35.“Incomplete Beta Functions” Internet: Available at: (accessed April 23, 2019).
36.Byerly, K., Ohodnicki, P.R., Moon, S.R., Leary, A.M., Keylin, V., McHenry, M.E., Simizu, S., Beddingfield, R., Yu, Y., Feichter, G., Noebe, R., Bowman, R., and Bhattacharya, S.: Metal amorphous nanocomposite (MANC) alloy cores with spatially tuned permeability for advanced power magnetics applications. JOM 70, 879 (2018).
37.Thottuvelil, V.J., Wilson, T.G., and Owen, H.A. Jr.: High-frequency measurement techniques for magnetic cores. IEEE Trans. Power Electron. 5, 41 (1990).


Type Description Title
Supplementary materials

Beddingfield et al. supplementary material 1
Beddingfield et al. supplementary material

 Word (72 KB)
72 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed