Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T10:08:23.888Z Has data issue: false hasContentIssue false

Thermal conductivity and thermal diffusivity of selected oxide single crystals

Published online by Cambridge University Press:  26 November 2012

A. Stanimirovic
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8521
N. M. Balzaretti
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8521
A. Feldman
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8521
J. E. Graebner
Affiliation:
Bell Labs, Lucent Technologies, Murray Hill, New Jersey 07974
Get access

Abstract

Values for the thermal conductivity κ and the thermal diffusivity D of four oxide single crystals were obtained. Near room temperature, the values for κ (W cm−1 K−1) and D (cm2 s−1) are as follows: LaAlO3, κ = 0.115, D = 0.0446; NdGaO3, κ = 0.068, D = 0.0197 for one structural orientation, and κ = 0.059, D = 0.0195 for an orthogonal orientation; (LaAlO3)0.3–SrAl0.5Ta0.5O3, κ = 0.051, D = 0.0133; and, ScAlMgO4, κ = 0.062, D = 0.0229. The relative standard uncertainties in these values are ±10% (1 σ). These values allowed us to calculate the specific heat of the materials. The thermal conductivity was measured by a dc heated bar method, and the thermal diffusivity was measured by a modification of Ångström's method.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Graebner, J.E., Reiss, M.E., Seibles, L., Hartnett, T.M., Miller, R.P., and Robinson, C.J., Phys. Rev. B 50, 3702 (1994).CrossRefGoogle Scholar
2.Ångström, M.A., Philos. Mag. 25, 130 (1863).CrossRefGoogle Scholar
3.Angström, M.A.Ann. Phys. (Leipzig) 114, 513 (1861).Google Scholar
4.Feldman, A. and Balzaretti, N.M., Rev. Sci. Instrum. 69, 237 (1998).CrossRefGoogle Scholar
5.Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids (Oxford University Press, Oxford, 1959), pp. 21, 139, and 140.Google Scholar
6.Parrott, J.E. and Stuckes, A.D., Thermal Conductivity of Solids (Pion, London, 1975), p. 24.Google Scholar
7.Seidles, P.H. and Danielson, G.C., J. Appl. Phys. 25 (1), 58 (1954).CrossRefGoogle Scholar
8.Gu, Y. and Hatta, I., Jpn. J. Appl. Phys., Part 1 30, 1137 (1991).Google Scholar
9.Gu, Y. and Yu, L., Diam. Films Technol. 6, 23 (1996).Google Scholar
10.Hatta, I., Sasuga, Y., Kato, R., and Maesono, A., Rev. Sci. Instrum. 56, 1643 (1985).CrossRefGoogle Scholar
11.Graebner, J.E.et al., Diamond Relat. Mater. 7, 1589 (1998).CrossRefGoogle Scholar
12.Morelli, D.T., J. Mater. Res. 7 (9), 24922494 (1992).CrossRefGoogle Scholar
13.Visser, E.P., Versteegen, E.H., and van Enckevort, W.J.P., J. Appl. Phys. 71 (7), 3238 (1992).CrossRefGoogle Scholar