Skip to main content Accessibility help
×
Home

Theory of the charged cluster formation in the low pressure synthesis of diamond: Part I. Charge-induced nucleation

  • Hyun M. Jang (a1) and Nong M. Hwang (a2)

Abstract

Based on several experimental observations, Hwang et al. recently proposed “the charged cluster model” [J. Cryst. Growth, 162, 55–68 (1996)] to disentangle the “puzzling thermodynamic paradox” encountered in the gas-activated chemical vapor deposition (CVD) of diamond. Many unusual phenomena observed in the CVD diamond process can be successfully approached by the charged cluster model. However, there are a couple of important subjects still unsolved quantitatively. The first question is connected with the main driving force for this unusual nucleation in the gas phase. The second issue is related to the difference in the thermodynamic stability between graphite and diamond for a nanometer-sized cluster during the growth. In this study, we have theoretically examined the thermodynamic driving forces for the charge-induced nucleation, in general, and have applied this idea to the nucleation of the charged carbon-atom cluster. It was shown that the short-range ion-induced dipole interaction and the ion-solvation electrostatic effect (Born term) were mainly responsible for this unusual nucleation in the gas phase. The theoretical analysis presented in this article is quite generic and, thus, can be applied to any process that involves the charge-induced nucleation.

Copyright

References

Hide All
1.Derjaguin, B. V. and Fedoseev, D. B., The Growth of Diamond and Graphite from the Gas Phase (Nauka, Moscow, USSR, 1977), Chap. 4.
2.Spitsyn, B. V., Bouilov, L. L., and Derjaguin, B. V., J. Cryst. Growth 52, 219 (1981).
3.Matsumoto, S., Sato, Y., Tsutsumi, M., and Setaka, N., J. Mater. Sci. 17, 3106 (1982).
4.Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).
5.Spear, K. E., J. Am. Ceram. Soc. 72, 171 (1989).
6.Yarbrough, W. A., J. Am. Ceram. Soc. 75, 3179 (1992).
7.Angus, J. C., Will, H. A., and Standko, W. S., J. Appl. Phys. 39, 2915 (1968).
8.Setaka, N., in Chemical Vapor Deposition 1987, Proc. 10th Int. Conf. on CVD, edited by Cullen, G. W. and Blocher, J., Jr. (The Electrochemical Society, Pennington, NJ, 1987), p. 1156.
9.Saito, Y., Sato, K., Tanaka, H., Fujita, K., and Matsuda, S., J. Mater. Sci. 23, 188 (1986).
10.Badzian, A. R., Badzian, T., Roy, R., Messier, R., and Spear, K. E., Mater. Res. Bull. 23, 531 (1988).
11.Salvadori, M. C., Brewer, M. A., Ager, J. W., Krishnan, K. M., and Brown, I. G., J. Electrochem. Soc. 139, 558 (1992).
12.Hwang, N. M., Hahn, J. H., and Yoon, D. Y., J. Cryst. Growth 160, 87 (1996).
13.Whittaker, A. G., Science 200, 763 (1978).
14.Badziag, P., Verwoerd, W. S., Ellis, W. P., and Greiner, N. R., Nature 343, 244 (1990).
15.Hwang, N. M., Bahng, G. W., and Yoon, D. N., Diamond Relat. Mater. 1, 191 (1992).
16.O'Brien, E. F. and Robinson, G. W., J. Chem. Phys. 61, 1050 (1974).
17.Castleman, A. W., Jr., Holland, P. M., and Keesee, R. G., J. Chem. Phys. 68, 1760 (1978).
18.Wilson, J. G., The Principles of Cloud-Chamber Technique (Cambridge Univ. Press, Cambridge, 1951), Chap. 1.
19.Peyrou, C., in Bubble and Spark Chambers, edited by Shutt, R. P. (Academic Press, Orlando, FL, 1967), Chap. 2.
20.Hwang, N. M., Hahn, J. H., and Yoon, D. Y., J. Cryst. Growth 162, 55 (1996).
21.Choi, K., Kang, S. L., Jang, H. M., and Hwang, N. M., J. Cryst. Growth 172, 416 (1997).
22.Jang, H. M. and Hwang, N. M., J. Mater. Res. 13, 3536 (1998).
23.Wang, R. B., Sommer, M., and Smith, F. W., J. Cryst. Growth 119, 271 (1992).
24.Hwang, N. M., J. Cryst. Growth 135, 165 (1994).
25.Bockris, J.O'M. and Reddy, A. K. N., Modern Electrochemistry (Plenum Press, New York, 1970), Vol. 1, Chap. 2.
26.CRC Handbook of Chemistry and Physics, 74th ed. (CRC Press, Boca Raton, FL, 1994).
27.Nieman, G. C. and Klabunde, K. J., “Clustering of Free Atoms and Particles: Polymerization and the Beginning of Film Growth,” in Thin Films from Free Atoms and Particles, edited by Klabunde, K. J. (Academic Press, Inc., Orlando, FL, 1985), Chap. 2.
28.Yang, S., Taylor, K. J., Craycraft, M. J., Conceicao, J., Pettiette, C. L., Cheshnovsky, O., and Smalley, R. E., Chem. Phys. Lett. 144, 431 (1988).
29.Pitzer, K. S. and Clementi, E., J. Am. Ceram. Soc. 81, 4477 (1959).
30.Furstenau, N. and Hillenkamp, F., Intern. J. Mass Spectrom. Ion Phys. 37, 155 (1981).
31.Heicklen, J., Colloid Formation and Growth: A Chemical Kinetic Approach (Academic Press, New York, 1976), Chap. VI.
32.Lee, N., Keesee, R. G., and Castleman, A. W., Jr., J. Colloid Interf. Sci. 75, 555 (1980).
33.Thompson, J. J., Conduction of Electricity through Gases (Cambridge Univ. Press, 1906).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed