Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T07:04:11.978Z Has data issue: false hasContentIssue false

Theoretical investigation of effect of pore size and pore passivation on the thermoelectric performance of silicene nanoribbons

Published online by Cambridge University Press:  22 August 2017

Sukhdeep Kaur
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
Deep Kamal Kaur Randhawa
Affiliation:
Department of Electronics and Communication Engineering, Guru Nanak Dev University, Ladhewali 144007, Punjab, India
Sukhleen Bindra Narang*
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
*
a)Address all correspondence to this author. e-mail: sukhleen2@yahoo.com
Get access

Abstract

Persistent evolution and scaling down of integrating circuits have created a need to identify new thermoelectric materials that can be exploited to convert dissipated heat into electrical energy. We demonstrate that thermoelectric performance of silicene nanoribbons (SiNRs) can be enhanced by introducing nanopores We observe that with the incorporation of pores, thermal conductance of SiNRs is reduced which in turn leads to enhancement of thermoelectric performance (high ZT). Although the Seebeck coefficient degrades in the presence of pore, the conductivity exhibits an improved pattern, in effect contributing to better performance. In this paper, our aim is to tune the pore to its optimal dimension so as to enhance the overall thermoelectric efficiency and to study the effect of passivation at the pore edges on the thermoelectric parameters. It is further analyzed that with the pore passivation, the thermal conductance exhibits a width-dependent oscillating behavior. Ballistic transport regime and semi-empirical method using Huckel basis set are used to obtain the electrical properties, while the Tersoff potential is used for the phononic system.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Terry M. Tritt

References

REFERENCES

Sadeghi, H., Sangtarash, S., and Lambert, C.J.: Enhanced thermoelectric efficiency of porous silicene nanoribbons. Sci. Rep. 5, 9514 (2015).CrossRefGoogle ScholarPubMed
Hossain, M.S., Dirini, F.A., Hossain, F.M., and Skafidas, E.: High performance graphene nano-ribbon thermoelectric devices by incorporation and dimensional tuning of nanopores. Sci. Rep. 5, 11297 (2015).Google Scholar
Hicks, L.D. and Dresselhaus, M.S.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 1663116634 (1993).Google Scholar
Karamitaheri, H., Pourfath, M., Faez, R., and Kosina, H.: Geometrical effects on the thermoelectric properties of ballistic graphene antidote lattces. J. Appl. Phys. 110, 05456 (2011).Google Scholar
Nika, D.L. and Balandin, A.A.: Two-dimensional phonon transport in graphene. J. Phys.: Condens. Matter 24, 233203 (2012).Google Scholar
Mingo, N. and Broido, D.A.: Thermoelectric power factor of nanoporous semiconductors. J. Appl. Phys. 101, 014322 (2007).CrossRefGoogle Scholar
Lee, J.H., Gall, G.A., and Grossman, J.C.: Nanoporous Si as an efficient thermoelectric material. Nano Lett. 8, 37503754 (2008).Google Scholar
Nakano, H., Mitsuoka, T., Harada, M., Horibuchi, K., Nozaki, H., Takahashi, N., Nonaka, T., Seno, Y., and Nakamura, H.: Soft synthesis of single-crystal silicon monolayer sheets. Angew. Chem., Int. Ed. 45, 63036306 (2006).Google Scholar
Cahangirov, S., Cahangirov, S., Topsakal, M., Akturk, E., Sahin, H., and Ciraci, S.: Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009).Google Scholar
Vogt, P., Padova, D., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., and Lay, G.: Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012).Google Scholar
Kim, J., Fischetti, M.V., and Aboud, S.: Structural, electronic, and transport properties of silicane nanoribbons. Phys. Rev. B 86, 205323 (2012).Google Scholar
Kamal, C., Chakrabarti, A., Banerjee, A., and Deb, S.: Silicene beyond mono-layers-different stacking configurations and their properties. J. Phys.: Condens. Matter 25, 085508 (2013).Google Scholar
Sadeghi, H., Bailey, S., and Lambert, C.J.: Silicene-based DNA nucleobase sensing. Appl. Phys. Lett. 104, 103104 (2014).Google Scholar
Huang, S.T., Kang, W., and Yang, L.: Electronic structure and quasiparticle bandgap of silicene structures. Appl. Phys. Lett. 102, 133106 (2013).Google Scholar
Sadeghi, H.: Electrical transport model of silicene as a channel of field effect transistor. J. Nanosci. Nanotechnol. 14, 41784184 (2014).Google Scholar
Ni, Z., Zhong, H., Jiang, X., Quhe, R., Wang, Y., Yang, J., Shi, J., and Lu, J.: Tunable band gap and doping type in silicene by surface adsorption: Towards tunneling transistors. Nanoscale 6, 76097618 (2014).Google Scholar
Qi, Y., Wang, Z., Zhang, M., Yang, F., and Wang, X.: Thermoelectric devices based on one-dimensional nanostructures. J. Mater. Chem. A 1, 61106124 (2013).Google Scholar
Liu, L. and Chen, X.: Effect of surface roughness on thermal conductivity of silicon nanowires. J. Appl. Phys. 107, 033501 (2010).CrossRefGoogle Scholar
Sandhu, J., Seong, M., and Sinha, S.: Partially coherent phonon transport in two-dimensionally rough nanowires. J. Comput. Electron. 11, 17 (2012).Google Scholar
Zhang, G.Q., Yu, Q.X., Wang, W., and Li, X.G.: Nanostructures for thermoelectric applications, synthesis, growth mechanism & property studies. Adv. Mater. 22, 19591962 (2012).CrossRefGoogle Scholar
Varshney, V., Roy, A.K., Dudis, D.S., Lee, J., and Farmer, B.L.: A novel nano-configuration for thermoelectric: Helicity induced thermal conductivity reduction in nanowires. Nanoscale 4, 50095016 (2012).Google Scholar
Zhou, J. and Yang, R.: Ballistic thermoelectricity in double-bend nanowires. Appl. Phys. Lett. 98, 173107 (2011).CrossRefGoogle Scholar
Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., and Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163167 (2008).Google Scholar
Boukai, A.I., Bunimovich, Y., Kheli, J.T., Yu, J.K., Goddard, W.A., and Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168171 (2008).Google Scholar
Pan, L., Liu, H.J., Tan, X.J., Lv, H.Y., Shi, J., Tang, X.F., and Zheng, G.: Thermoelectric properties of armchair and zigzag silicone nanoribbons. Phys. Chem. Chem. Phys. 14, 1358813593 (2012).CrossRefGoogle Scholar
Tchalal, M.R., Enriquez, H., Mayne, A.J., Kara, A., Roth, S., Silly, M.G., Bendounan, A., Sirotti, F., Greber, T., Aufray, B., Dujardin, G., Ali, M.A., and Oughaddou, H.: Formation of one-dimensional self assembled silicon nanoribbons on Au(110)-(2 × 1). Appl. Phys. Lett. 102, 083107 (2013).Google Scholar
Meng, L., Wang, Y., Zhang, L., Du, S., Wu, R., Li, L., Zhang, Y., Li, G., Zhou, H., Hofer, W.A., and Gao, H.J.: Buckled silicene formation on Ir(111). Nano Lett. 13, 685690 (2013).Google Scholar
Fleurence, A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y., and Takamura, Y.Y.: Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 245501 (2012).CrossRefGoogle ScholarPubMed
Friedlein, R., Fleurence, A., Sadowski, J.T., and Takamura, Y.Y.: Tuning of silicene substrate interactions with potassium absorption. Appl. Phys. Lett. 102, 221603 (2013).Google Scholar
Tchalala, M.R., Enriquez, H., Mayne, A.J., Kara, A., Dujardin, G., Ali, M.A., and Oughaddou, H.: Atomic structure of silicene nanoribbons on Ag(110). J. Phys.: Conf. Ser. 491, 012002 (2014).Google Scholar
Kara, A., Lalmi, B., Oughaddou, H., Enriquez, H., Vizzini, S., Ealet, B., and Aufray, B.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 22, 223109 (2010).Google Scholar
Yang, H.J., Yuan, F.W., and Tuan, H.Y.: Vapor-liquid solid growth of silicon nanowires using organosilane as precursor. Chem. Commun. 46, 61056107 (2010).CrossRefGoogle ScholarPubMed
Hu, Y., Peng, K.Q., Qiao, Z., Huang, X., Zhang, F.Q., Sun, R.N., Meng, X.M., and Lee, S.T.: Metal-catalyzed electroless etching of silicon in aerated HF/H2O vapor for facile fabrication of silicon nanostructures. Nano Lett. 14, 42124219 (2014).Google Scholar
Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M.J., and Golovchenko, J.A.: Ion-beam sculpting at nanometer length scales. Nature 412, 166169 (2001).Google Scholar
Lo, C.J., Aref, T., and Bezryadin, A.: Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology 17, 32643267 (2006).Google Scholar
Kienle, D., Cerda, J.I., and Ghosh, A.W.: Extended Huckel theory for band structure, chemistry, and transport. Carbon nanotubes. J. Appl. Phys. 100, 043714 (2006).Google Scholar
Landauer, R.: Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223231 (1957).Google Scholar
Esfarjani, K., Zebarjadi, M., and Kawazoe, Y.: Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation. Phys. Rev. B 73, 085406 (2006).Google Scholar
Sadeghi, H., Sangtarash, S., and Lambert, C.J.: Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons. Beilstein J. Nanotechnol. 6, 11761182 (2015).Google Scholar
Jin, F. and Laurent, P.: Tuning thermal conductivity of nanoporous crystalline silicon by surface passivation: A moleculardynamics study. Appl. Phys. Lett. 101, 011909 (2012).Google Scholar
Hu, L. and Maroudas, D.: Thermal transport properties of graphene nanomeshes. J. Appl. Phys. 116, 184304 (2014).CrossRefGoogle Scholar
Lehmann, T., Ryndyk, D.A., and Cuniberti, G.: Enhanced thermoelectric figure of merit in polycrystalline carbon nanostructures. Phys. Rev. B 92, 035418 (2015).Google Scholar