Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-11T18:11:52.875Z Has data issue: false hasContentIssue false

Textured ZnO Thin Films on (0001) Sapphire Produced by Chemical Solution Deposition

Published online by Cambridge University Press:  31 January 2011

B. Wessler
Affiliation:
Institut für Anorganische Chemie, Universit¨at Bonn, Römerstraße 164, 53117 Bonn, Germany
F. F. Lange
Affiliation:
Materials Department, Materials Research Laboratory, University of California, Santa Barbara, California 93106
W. Mader
Affiliation:
Institut für Anorganische Chemie, Universität Bonn, Römerstraße 164,53117 Bonn, Germany
Get access

Abstract

Highly textured zinc oxide films were produced on basal plane sapphire substrates by chemical solution deposition. Films with oriented growth were achieved by spin coating a 0.75 M precursor solution of zinc acetate dihydrate and ethanolamine in 2-methoxyethanol, heated at 300 °C/10 min, then at 500 °C/5 h, and finally at 850 °C/12 h. Films were characterized with x-ray diffraction (XRD) and scanning and transmission electron microscopy. The films exhibited only the (0002) ZnO line in XRD diagrams, proving a very well-developed out-of-plane texture. At temperatures above 700 °C the ZnAl2O4 spinel was observed, which formed as a reaction layer between sapphire and ZnO. Few specimens produced both in-plane and out-of-plane oriented growth of ZnO on basal plane sapphire. It was hypothesized that the substrate miscut, uncontrolled for the current experiments, could be the cause of the infrequent growth of epitaxial films.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pol, F.C.M. Van de, Ceram. Bull. 69, 1959 (1990).Google Scholar
Hamdani, F., Botchkarev, A.E., Tang, H., Kim, W., and Morcoc, H., Appl. Phys. Lett. 71, 3111 (1997).CrossRefGoogle Scholar
Detchprohm, T., Amano, H., Hiramatsu, K., and Akasaki, I., J. Cryst. Growth 128, 384 (1993).CrossRefGoogle Scholar
Sharma, A.K., Narayan, J., Muth, J.F., Teng, C.W., Jin, C., Kvit, A., Kolbas, R.M., and Holland, O.W., Appl. Phys. Lett. 75, 3327 (1999).CrossRefGoogle Scholar
Ohtomo, A., Kawasaki, M., Ohkubo, I., Koinuma, K., Yasuda, T., and Segawa, Y., Appl. Phys. Lett. 75, 980 (1999).CrossRefGoogle Scholar
Chen, Y.F., Hong, S.K., Ko, H.J., Nkajima, M., Yao, T., and Sekawa, Y., Appl. Phys. Lett. 76, 245 (2000).CrossRefGoogle Scholar
Matsubara, K., Fons, P., Yamada, A., Watanabe, M., and Niki, S., Thin Solid Films 347, 238 (1998).CrossRefGoogle Scholar
Ohtomo, A., Tamura, K., Saikusa, K., Takahashi, K., Makino, T., Segawa, Y., Koinuma, H., and Kawasaki, M., Appl. Phys. Lett. 75, 2635 (1999).CrossRefGoogle Scholar
Ishii, T., Tazoh, Y., and Miyazawa, S., J. Cryst. Growth 189/190, 208 (1998).CrossRefGoogle Scholar
Wessler, B. and Mader, W., J. Cryst. Growth (submitted).Google Scholar
Ohtomo, A., Kawasaki, M., Sakurai, Y., Yoshida, Y., Koinuma, K., Yu, P., Tang, Z.K., Wong, G.K.L., and Segawa, Y., Mater. Sci. Eng. B 54, 24 (1998).CrossRefGoogle Scholar
Kasuga, M. and Mochizuki, M., J. Cryst. Growth 54, 185 (1981).CrossRefGoogle Scholar
Srikant, V., Sergo, V., and Clarke, D.R., J. Am. Ceram. Soc. 78, 1931 (1995).CrossRefGoogle Scholar
Puchert, M.K., Timbrell, P.Y., and Lamb, R.N., J. Vac. Sci. Technol. A 14, 2220 (1996).CrossRefGoogle Scholar
Caillaud, F., Smith, A., and Baumard, J.F., J. Europ. Ceram. Soc. 6, 313 (1990).CrossRefGoogle Scholar
Studenikin, S.A., Golego, N., and Cocivera, M., J. Appl. Phys. 83, 2104 (1998).CrossRefGoogle Scholar
Tiburcio-Silver, A., Sanchez-Juarez, A., and Avila-Garcia, A., Sol. Energy Mater. Sol. Cells 55, 3 (1998).CrossRefGoogle Scholar
Nishizawa, H. and Yuasa, K., J. Mater. Sci. Lett. 17, 985 (1998).CrossRefGoogle Scholar
Ohyama, M., Kozuka, H., Yoko, T., and Sakka, S., J. Ceram. Soc. Jpn. 104, 296 (1996).CrossRefGoogle Scholar
Ohyama, M., Kozuka, H., and Yoko, T., Thin Solid Films 306, 78 (1997).CrossRefGoogle Scholar
Ohya, Y., Saiki, H., and Takahashi, Y., J. Mater. Sci. 29, 4099 (1994).CrossRefGoogle Scholar
Ohya, Y., Saiki, H., Tanaka, T., and Takahashi, Y., J. Am. Ceram. Soc. 79, 825 (1996).CrossRefGoogle Scholar
Nishio, K., Miyake, S., Sei, T., Watanabe, Y., and Tsuchiya, T., J. Mater. Sci. 31, 3651 (1996).CrossRefGoogle Scholar
Lange, F.F., Science 273, 903 (1996).CrossRefGoogle Scholar
Thompson, C.V., Ann. Rev. Mater. Sci. 20, 245 (1990).CrossRefGoogle Scholar
Ohyama, M., Kozuka, H., and Yoko, T., J. Am. Ceram. Soc. 81, 1622 (1998).CrossRefGoogle Scholar
Strecker, A., Salzberger, U., and Mayer, J., Prakt. Metallogr. 30, 10 (1993).Google Scholar
Hiltunen, L., Leskelä, M., Mäkelä, M., and Niiniströ, L., Acta Chem. Scan. A 41, 548 (1987).CrossRefGoogle Scholar
Kamalasanan, M.N. and Chandra, S., Thin Solid Films 288, 112 (1996).CrossRefGoogle Scholar
Sakurai, K., Kanehiro, M., Nakamura, K., Tanabe, T., Fujita, S., and Fujita, S., J. Cryst. Growth 214/215, 92 (2000).CrossRefGoogle Scholar
Wessler, B., Steinecker, A., and Mader, W., J. Cryst. Growth (accepted for publication).Google Scholar