Skip to main content Accessibility help
×
Home

Tensile strength of zinc oxide films measured by a microbridge method

  • C. W. Ong (a1), D. G. Zong (a1), M. Aravind (a1), C. L. Choy (a1) and D. R. Lu (a2)...

Abstract

Double-layered ZnO/silicon nitride microbridges were fabricated for microbridge tests. In a test, a load was applied to the center of the microbridge specimen by using a microwedge tip, where the displacement was recorded as a function of load until the specimen broke. The silicon nitride layer in the structure served to enhance the robustness of the specimen. By fitting the data to a theory, the elastic modulus, residual stress, and tensile strength of the ZnO film were found to be 137 ± 18 GPa, −0.041 ± 0.02 GPa, and 0.412 ± 0.05 GPa, respectively. The analysis required the elastic modulus, internal stress, and tensile strength of the silicon nitride layer. They were measured separately by microbridge tests on single-layered silicon nitride microbridges. The measured tensile strength of the ZnO films represents the maximum tolerable tensile stress that the films can sustain when they are used as the functional component in devices.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: apacwong@inet.polyu.edu.hk

References

Hide All
1.Dan, C-H. and Kim, E.S., in Proceedings of the Fourteenth IEEE International Conference on Micro Electro Mechanical Systems (2001), p. 110.
2.Yong, Y-J., Kang, Y-S., Lee, P.S., and Lee, J-Y., J. Vac. Sci. Technol. B 20, 42 (2002).
3.Park, S.H., Seo, B.C., Yoon, G., and Park, H.D., J. Vac. Sci. Technol. A 18, 2432 (2000).
4. Committee on Advanced Materials and Fabrication Methods for Microelectromechanical Systems, Microelectromechanical Systems: Advanced Materials and Fabrication Methods (National Academy Press, Washington D.C., 1997), p. 2.
5.Gong, X. and Suo, Z., J. Mech. Phys. Solids 44, 751 (1996).
6.dos, S.L.Lucato, Santos e, Bahr, H-A., Pham, V-B., Lupascu, D.C., Balke, H., Rödel, J., and Bahr, U., J. Mech. Phys. Solids 44, 751 (2002).
7.Cardinale, G.F. and Tustison, R.W., Thin Solid Films 207, 126 (1992).
8.Vlassak, J.J. and Nix, W.D., J. Mater. Res. 7, 3242 (1992).
9.Su, Y-J., Qian, C-F., Zhao, M-H., and Zhang, T-Y., Acta Mater. 48, 4901 (2000).
10.Zhang, T-Y., Su, Y-J., Qian, C-F., Zhao, M-H., and Chen, L-Q., Acta Mater. 48, 2843 (2000).
11.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).
12.Teter, D.M., MRS Bull. 23, 22 (1998).
13.Tsang, M.P., Ong, C.W., Chong, N., Choy, C.L., Lim, P.K., and Hung, W.W., J. Vac. Sci. Technol. A 19, 2542 (2001).
14.Adam, A.C., in VLSI Technology, edited by Sze, S.M. (McGraw- Hill, Singapore, 1985), p. 120.
15.Budinski, K.G. and Budinski, M.K., Engineering Materials: Properties and Selection, 6th ed. (Prentice Hall, Englewood Cliffs, NJ, 1999), p. 694.
16.Yang, J.L. and Paul, O., Sens. Actuators A 97–98, 520 (2002).
17.Ogata, S., Hirosaki, N., Kocer, C., and Kitagawa, H., Phys. Rev. B 64, article 172102 (2001).
18.Jade, S.A. and Smith, J.G., IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46, 768 (1999).
19.Kucheyev, S.O., Bradby, J.E., Williams, J.S., Jagadish, C., and Swain, M.V., Appl. Phys. Lett. 6, 956 (2002).
20.Gupta, V. and Mansingh, A., J. Appl. Phys. 80, 1063 (1996).
21.Cimpoiasu, A., Pers, N.M. van der, Keyser, Th.H. de, Venema, A., and Vellekoop, M.J., Smart Mater. Struct. 5, 744 (1996).
22.Hinze, J. and Ellmer, K., J. Appl. Phys. 88, 2443 (2002).
23.Lu, C., Danzer, R., and Fischer, F.D., Phys. Rev. E 65, article 067102 (2002).

Tensile strength of zinc oxide films measured by a microbridge method

  • C. W. Ong (a1), D. G. Zong (a1), M. Aravind (a1), C. L. Choy (a1) and D. R. Lu (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed