Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T20:47:09.668Z Has data issue: false hasContentIssue false

Techniques of observation and characterization of the domain structure in periodically poled lithium niobate

Published online by Cambridge University Press:  31 January 2011

V. Bermúdez
Affiliation:
Departamento Física de Materiales, C-IV, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
A. Gil
Affiliation:
Departamento Física de la Materia Condensada, C-III, Universidad Autóoma de Madrid, E-28049 Madrid, Spain
L. Arizmendi*
Affiliation:
Departamento Física de Materiales, C-IV, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
J. Colchero
Affiliation:
Departamento Física de la Materia, Condensada, C-III, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
A. M. Baró
Affiliation:
Departamento Física de la Materia, Condensada, C-III, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
E. Diéguez
Affiliation:
Departamento Física de Materiales, C-IV, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
*
a)Address all correspondence to this author.luis.arizmendi@uam.es
Get access

Abstract

The domain structure of bulk periodically poled lithium niobate crystals were analyzed by different techniques. Images of topography, electrostatic force, and piezoelectric response were studied by scanning force microscopy. All these images showed the domain structure of the samples. The electrostatic force was always attractive pointing to a dielectric origin. The diffraction of a laser beam by the periodic structures was also observed, denoting a periodic change of refractive index. From the angle of diffraction the domain spatial frequency was directly obtained. The topographic profile of etched samples was studied by both scanning force and scanning electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shen, Y.R., The Principles of Nonlinear Optics (Wiley Interscience, New York, 1984).Google Scholar
2.Houé, M. and Townsend, P.D., J. Phys. D. Appl. Phys. 28, 1747 (1995).CrossRefGoogle Scholar
3.Taya, M., Bashaw, M.C., and Fejer, M.M., Optics Lett. 21, 857 (1996).CrossRefGoogle Scholar
4.Zhu, Y., Xiao, R.F., Fu, J.S., Wong, G.K.L, and Ming, N., Appl. Phys. Lett. 73, 432 (1998).CrossRefGoogle Scholar
5.Fen, J., Zhu, Y., and Ming, N., Phys. Rev. B 41, 5578 (1990).Google Scholar
6.Carruthers, J.R., Peterson, G.E., Grasso, M., and Bridenbaugh, P.M., J. Appl. Phys. 42, 1846 (1971).CrossRefGoogle Scholar
7.Webjörn, J., J. Lightwave Technol. 11, 589 (1993).CrossRefGoogle Scholar
8.Bermúdez, V., Caccavale, F., Sada, C., Segato, F., and Diéguez, E., J. Cryst. Growth 191, 589 (1998).CrossRefGoogle Scholar
9.Bermúdez, V., Callejo, D., Caccavale, F., Segato, F., Agulló-Rueda, F., and Diéguez, E., Solid State Commun. 114, 555 (2000).CrossRefGoogle Scholar
10.Saurenbach, F. and Terris, B.D., Appl. Phys. Lett. 56, 1703 (1990).CrossRefGoogle Scholar
11.Lüthi, R., Haetke, H., Meyer, K-P., Howald, L., and Güntherodt, H-J., J. Appl. Phys. 74, 7461 (1993).CrossRefGoogle Scholar
12.Blum, H., Wadas, A., Wiesendanger, R., Roshko, A., Aust, J.A., and Nam, D., Appl. Phys. Lett. 71, 146 (1997).CrossRefGoogle Scholar
13.Hidaka, T., Maruyama, T., Saitoh, M., Mikoshiba, N., Shimizu, M., Shiosaki, T., Wills, L.A., Hiskes, R., Dicarolis, S.A., and Amano, J., Appl. Phys. Lett. 68, 2358 (1996).CrossRefGoogle Scholar
14.Blum, H., Wadas, A., Wiesendanger, R., Meyer, K-P., and Szczésniak, L., Phys. Rev. B 55, 4 (1997).CrossRefGoogle Scholar
15.Eng, L.M., Abplanalp, M., and Günter, P., Appl. Phys. A 66, S679 (1998).CrossRefGoogle Scholar
16.Correia, A., Massanell, J., García, N., Levaniuk, A.P., Zlatkin, A., and Przeslawski, J.. Appl. Phys. Lett. 68, 2796 (1996).CrossRefGoogle Scholar
17.Ming, N-B., Hong, J-F., and Feng, D., J. Mater. Sci. 17, 1663 (1982).CrossRefGoogle Scholar
18.Bermúdez, V., Serrano, M.D., and Diéguez, E., J. Cryst. Growth 200, 185 (1999).CrossRefGoogle Scholar
19.Marín, C. and Diéguez, E., Orientation of Single Crystals by Back Reflection Laue Pattern Simulation (World Scientific, Singapore, 1999).CrossRefGoogle Scholar
20.de Pablo, P.J., Colchero, J., Gómez-Herrero, J., and Baró, A.M., Appl. Phys. Lett. 73, 3300 (1998).CrossRefGoogle Scholar
21.Dhanaraj, G., Bhat, H.L., and Narayanan, P.S., Ferroelectrics 157, 7 (1994).CrossRefGoogle Scholar
22.Prokhorov, A.M. and Kuz'minov, Yu.S., “Physics and Chemistry of Lithium Niobate (Adam Hilger, Bristol, 1990).Google Scholar
23.Pruneri, V., Kazansky, P.G., Webjörn, J., Russell, P.St.J., and Hanna, D.C., Appl. Phys. Lett. 67, 1957 (1995).CrossRefGoogle Scholar
24.Nassau, K., Levinstein, H.J., and Loiacono, G.M., Appl. Phys. Lett. 6, 228 (1965).CrossRefGoogle Scholar