Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T11:19:49.447Z Has data issue: false hasContentIssue false

Systematic trends of YBa2Cu3O7−δ thin films post annealed in low oxygen partial pressures

Published online by Cambridge University Press:  03 March 2011

S.Y. Hou
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Julia M. Phillips
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
D.J. Werder
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
T.H. Tiefel
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J.H. Marshall
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
M.P. Siegal
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Get access

Abstract

Systematic studies have been performed on 1000 Å YBa2Cu3O7−δ films produced by the BaF2 process and annealed in an oxygen partial pressure (Po2) range from 740 Torr to 10 mTorr as well as a temperature range from 600 to 1050 °C. The results show that while high quality films can be annealed in a wide range of oxygen partial pressure, they have different characteristics. In general, crystalline quality and Tc are optimized at high Po2 and high annealing temperature, while strong flux pinning and low normal state resistivity are achieved at lower values of both variables. Under optimized low Po2 conditions, an ion channeling Xmin of 6% is obtained on films as thick as 5000 Å. This study will serve as a useful guide to tailoring film properties to the application at hand.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Humphreys, R. G., Satchell, J. S., Chew, N. G., Edwards, J. A., Goodyear, S. W., Blenkinsop, S. E., Dosser, O. D., and Cullis, A. G., Supercon. Sci. Technol. 3, 38 (1990).CrossRefGoogle Scholar
2Simon, R., Phys. Today, June, 64 (1991).CrossRefGoogle Scholar
3Phillips, J. M., in The New Superconducting Electronics, NATO ASI Series E, Vol. 251, edited by Weinstock, H. and Ralston, R. W. (Kluwer, Dordrecht, The Netherlands, 1993), p. 59.CrossRefGoogle Scholar
4Laibowitz, R. B., Koch, R. H., Chaudhari, P., and Gambino, R. J., Phys. Rev. B 35, 882 (1987).CrossRefGoogle Scholar
5Mankiewich, P. M., Schofield, J. H., Skocpol, W. J., Howard, R. E., Dayem, A. H., and Good, E., Appl. Phys. Lett. 51, 1753 (1987).CrossRefGoogle Scholar
6Siegal, M. P., Phillips, J. M., van Dover, R. B., Tiefel, T. H., and Marshall, J. H., J. Appl. Phys. 68, 6353 (1990).CrossRefGoogle Scholar
7Martens, J. S., Hietala, V. M., Plut, T. A., Ginley, D. S., Vawter, G. A., Tigges, C. P., Siegal, M. P., Phillips, J. M., and Hou, S. Y., IEEE Trans. Appl. Supercon. 3, 2295 (1993).CrossRefGoogle Scholar
8Mogro-Campero, A. and Turner, L. G., Appl. Phys. Lett. 58, 417 (1991).CrossRefGoogle Scholar
9Feenstra, R., Lindemer, T. B., Budai, J. B., and Galloway, M. D., J. Appl. Phys. 69, 6569 (1991).CrossRefGoogle Scholar
10Siegal, M. P., Hou, S. Y., Phillips, J. M., Tiefel, T. H., and Marshall, J. H., J. Mater. Res. 7, 2658 (1992).CrossRefGoogle Scholar
11Matijasevic, V., Rosenthal, P., Shinohara, K., Marshall, A. F., Hammond, R. H., and Beasley, M. R., J. Mater. Res. 6, 682 (1991).CrossRefGoogle Scholar
12Feenstra, R., Christen, D. K., Klabunde, C. E., and Budai, J. D., Phys. Rev. B 45, 7555 (1992).CrossRefGoogle Scholar
13Feenstra, R., Norton, D. P., Budai, J. D., Christen, D. K., Lowndes, D. H., Matijasevic, V. C., Eom, C-B., Geballe, T. H., Hellman, E. S., and Hartford, E. H., in Layered Superconductors: Fabrication, Properties and Applications, edited by Shaw, D. T., Tsuei, C. C., Schneider, T. R., and Shiohara, Y. (Mater. Res. Soc. Symp. Proc. 275, Pittsburgh, PA, 1992), p. 101.Google Scholar
14Kittl, J. A., Johnson, W. L., and Nieh, C. W., J. Mater. Res. 7, 2003 (1992).CrossRefGoogle Scholar
15Lu, P., Li, Y. Q., Zhao, J., Chern, C. S., Gallois, B., Norris, P., Kear, B. D., and Cosandey, F., Appl. Phys. Lett. 60, 1265 (1992).CrossRefGoogle Scholar
16Selinder, T. I., Helmersson, U., Han, Z., Sundgren, J-E., Sjöström, H., and Wallenberg, L. R., Physica C 202, 69 (1992).CrossRefGoogle Scholar
17Doolittle, L. R., Nucl. Instrum. Methods B9, 344 (1985).CrossRefGoogle Scholar
18Hagen, S. J., Jing, T. W., Wang, Z. Z., Horvath, J., and Ong, N. P., Phys. Rev. B 37, 7928 (1988).CrossRefGoogle Scholar
19Poppe, U., Klein, N., Dähne, U., Soltner, H., Jia, C. L., Kabius, B., Urban, K., Lubig, A., Schmidt, K., Hensen, S., Orbach, S., Müller, G., and Piel, H., J. Appl. Phys. 71, 5572 (1992).CrossRefGoogle Scholar
20Char, K., Lee, M., Barton, R. W., Marshall, A. F., Bozovic, I., Hammond, R. H., Beasley, M. R., Geballe, T. H., and Kapitulnik, A., Phys. Rev. B 38, 834 (1988).CrossRefGoogle Scholar
21Martin, S., Gurvitch, M., Rice, C. E., Hebard, A. F., Gammel, P. L., Fleming, R. M., and Fiory, A. T., Phys. Rev. B 39, 9611 (1989).CrossRefGoogle Scholar
22Morris, D. E., Markelz, A. G., Fayn, B., and Nickel, J. H., Physica C 168, 153 (1990).CrossRefGoogle Scholar
23Wada, T., Suzuki, N., Ichinose, A., Yaegashi, Y., Yamauchi, H., and Tanaka, S., Appl. Phys. Lett. 57, 81 (1990).CrossRefGoogle Scholar
24Lindemer, T. B., Washburn, F. A., MacDougall, C. S., Feenstra, R., and Cavin, O. B., Physica C 178, 93 (1991).CrossRefGoogle Scholar
25Tolpygo, S. K., Shokhor, S., Nadgorny, B., Bourdillon, A., Lin, J-Y., Hou, S. Y., Phillips, J. M., and Gurvitch, M., Appl. Phys. Lett. 63, 1696 (1993).CrossRefGoogle Scholar
26Mogro-Campero, A. and Turner, L. G., J. Appl. Phys. 73, 5295 (1993).CrossRefGoogle Scholar
27Feenstra, R., Christen, D. K., Budai, J. D., Pennycook, S. J., Norton, D. P., Lowndes, D. H., Klabunde, C. E., and Galloway, M. D., in High Tc Superconductor Thin Films, edited by Correra, L. in Proceedings of symposium Al on high temperature superconductor thin films of the international conference on advanced materials-ICAM 91, Strasbourg, France, May 27–31 (1991), (Elsevier, New York, 1992), p. 331.Google Scholar
28Siegal, M. P., Phillips, J. M., Hebard, A. F., van Dover, R. B., Farrow, R. C., Tiefel, T. H., and Marshall, J. H., J. Appl. Phys. 70, 4982 (1991).CrossRefGoogle Scholar
29Hou, S. Y., Phillips, J. M., Tiefel, T. H., Fleming, R. M., and Marshall, J. H., Appl. Phys. Lett. 62, 3201 (1993).CrossRefGoogle Scholar
30Wu, X. D., Venkatesan, T., Inam, A., Xi, X. X., Li, Q., McLean, W. L., Chang, C. C., Hwang, D. M., Ramesh, R., Nazar, L., Wilkens, B., Schwarz, S. A., Ravi, R. T., Martinez, J. A., England, P., Tarascon, J. M., Muenchausen, R. E., Foltyn, S., Estler, R. C., Dye, R. C., Garcia, A. R., and Nogar, N. S., in Laser Ablation for Materials Synthesis, edited by Paine, D. C. and Bravman, J. C. (Mater. Res. Soc. Symp. Proc. 191, Pittsuburgh, PA, 1990), p. 129.Google Scholar
31Gupta, A. and Hussey, B. W., Appl. Phys. Lett. 58, 1211 (1991).CrossRefGoogle Scholar
32Eom, C. B., Sun, J. Z., Lairson, B. M., Streiffer, S. K., Marshall, A. F., Yamamoto, K., Anlage, S. M., Bravman, J. C., and Geballe, T. H., Physica C 171, 354 (1990).CrossRefGoogle Scholar
33Swalin, R. A., Thermodynamics of Solids, 2nd ed. (John Wiley &Sons, New York, 1972), Chap. 14.Google Scholar
34Maier, J. and Pfundtner, G., Adv. Mater. 3, 292 (1991).CrossRefGoogle Scholar
35Hammond, R. H. and Bormann, R., Physica C 162–164, 703 (1989).CrossRefGoogle Scholar
36Lindemer, T. B., Hunley, J. F., Gates, J. E., Sutton, A. F. Jr., Brynestad, J., Hubbard, C. R., and Gallagher, P. K., J. Am. Ceram. Soc. 72, 1775 (1989).CrossRefGoogle Scholar
37Batlogg, B., Takagi, H., Kao, H. L., and Kwo, J., in Electronic Properties of High-Tc Superconductors, Springer Series in Solid-State Sciences, edited by Kuzmany, H., Mehring, M., and Fink, J. (Springer-Verlag, Berlin, Heidelberg, 1993), Vol. 113, p. 5.CrossRefGoogle Scholar