Skip to main content Accessibility help

Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles

  • Wenhui Ling (a1), Mingyu Wang (a1), Chunxia Xiong (a1), Dengfeng Xie (a1), Qiyu Chen (a1), Xinyue Chu (a1), Xiaoyan Qiu (a1), Yuemin Li (a1) and Xiong Xiao (a1)...


Magnetic iron oxide nanoparticles (MIONPs) are particularly attractive in biosensor, antibacterial activity, targeted drug delivery, cell separation, magnetic resonance imaging tumor magnetic hyperthermia, and so on because of their particular properties including superparamagnetic behavior, low toxicity, biocompatibility, etc. Although many methods had been developed to produce MIONPs, some challenges such as severe agglomeration, serious oxidation, and irregular size are still faced in the synthesis of MIONPs. Thus, various strategies had been developed for the surface modification of MIONPs to improve the characteristics of them and obtain multifunctional MIONPs, which will widen the applicational scopes of them. Therefore, the processes, mechanisms, advances, advantages, and disadvantages of six main approaches for the synthesis of MIONPs; surface modification of MIONPs with inorganic materials, organic molecules, and polymer molecules; applications of MIONPs or modified MIONPs; the technical challenges of synthesizing MIONPs; and their limitations in biomedical applications were described in this review to provide the theoretical and technological guidance for their future applications.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.



Hide All
1.Sun, T., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M., and Xia, Y.: Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. 53, 12320 (2014).
2.Ei-Boubbou, K.: Magnetic iron oxide nanoparticles as drug carriers: Preparation, conjugation and delivery. Nanomedicine 2, 1 (2018).
3.Luo, X., Peng, X., Hou, J., Wu, S., Shen, J., and Wang, L.: Folic acid-functionalized polyethylenimine superparamagnetic iron oxide nanoparticles as theranostic agents for magnetic resonance imaging and PD-L1 siRNA delivery for gastric cancer. Int. J. Nanomed. 12, 5331 (2017).
4.Ma, W., Xie, Q., Zhang, B., Chen, H., Tang, J., Lei, Z., Wu, M., Zhang, D., and Hu, J.: Neural induction potential and MRI of ADSCs labeled cationic superparamagnetic iron oxide nanoparticle in vitro. Contrast Media Mol. Imaging 2018, 1 (2018).
5.Lingamdinne, L.P., Chang, Y.Y., Yang, J.K., Singh, J., Choi, E.H., Shiratani, M., Koduru, J.R., and Attri, P.: Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem. Eng. J. 307, 74 (2017).
6.Bull, E., Madani, S., Sheth, R., Seifalian, A., Green, M., and Seifalian, A.: Stem cell tracking using iron oxide nanoparticles. Int. J. Nanomed. 9, 1641 (2014).
7.Feijoo, S., Gonzalez-Garca, S., Moldes-Diz, Y., Vazquez-Vazquez, C., Feijoo, G., and Moreira, M.T.: Comparative life cycle assessment of different synthesis routes of magnetic nanoparticles. J. Cleaner Prod. 143, 528 (2017).
8.Sari, E., Fadli, A., and Amri, A.: The 3 hours-hydrothermal synthesis of high surface area superparamagnetic Fe3O4 core–shell nanoparticles. JUSAMI 19, 9 (2017).
9.Sulaiman, G.M., Tawfeeq, A.T., and Naji, A.S.: Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. Artif. Cells, Nanomed., Biotechnol. 46, 1215 (2018).
10.Wu, W., He, Q., and Jiang, C.: Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397451 (2008).
11.Zhu, N., Ji, H., Yu, P., Niu, J., Farooq, M.U., Akram, M.W., Udego, I.O., Li, H., and Niu, X.: Surface modification of magnetic iron oxide nanoparticles. Nanomaterials 8, 810 (2018).
12.Pušnik, K., Goršak, T., Drofenik, M., and Makovec, D.: Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid. J. Magn. Magn. Mater. 413, 65 (2016).
13.Byoun, W., Jang, M., and Yoo, H.: Fabrication of highly fluorescent multiple Fe3O4 nanoparticles core–silica shell nanoparticles. J. Nanopart. Res. 21, 1 (2019).
14.Suh, S.K., Yuet, K., Hwang, K., Bong, K.W., Doyle, P.S., and Hatton, T.A.: Synthesis of nonspherical superparamagnetic particles: In situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography. J. Am. Chem. Soc. 134, 7337 (2012).
15.Tamer, U., Gündoğdu, Y., Boyacıi, H., and Pekmez, K.: Synthesis of magnetic core–shell Fe3O4–Au nanoparticle for biomolecule immobilization and detection. J. Nanopart. Res. 12, 1187 (2010).
16.Businova, P., Chomoucka, J., Prasek, J., Hrdy, R., Drbohlavova, J., Sedlacek, P., and Hubalek, J.: Polymer-coated iron oxide magnetic nanoparticles-preparation and characterization. Nano Convergence 4, 565 (2011).
17.Mahdavi, M., Ahmad, M.B., Haron, M.J., Namvar, F., Nadi, B., Rahman, M.Z.A., and Amin, J.: Synthesis, surface modification and characterization of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18, 7533 (2013).
18.Wahab, A., Imran, M., Ikram, M., Naz, M., Aqeel, M., Rafiq, A., Majeed, H., and Ali, S.: Dye degradation property of cobalt and manganese doped iron oxide nanoparticles. Appl. Nanosci. 1, 1 (2019).
19.Liu, Z., Wang, H., Lu, Q., Du, G., Peng, L., Du, Y., Zhang, S., and Yao, K.: Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles. J. Magn. Magn. Mater. 283, 258 (2004).
20.Aghazadeh, M. and Karimzadeh, I.: Preparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications. Int. J. Inorg. Mater. 5, 95 (2016).
21.Alp, E. and Aydogan, N.: A comparative study: Synthesis of superparamagnetic iron oxide nanoparticles in air and N2 atmosphere. Colloids Surf., A 510, 205 (2016).
22.Li, S., Zhang, T., Tang, R., Qiu, H., Wang, C., and Zhou, Z.: Solvothermal synthesis and characterization of monodisperse superparamagnetic iron oxide nanoparticles. J. Magn. Magn. Mater. 379, 226 (2015).
23.Walton, R.: Cheminform abstract: Solvothermal synthesis of cerium oxides. ChemInform 33, 126 (2010).
24.Tian, Y., Yu, B., Li, X., and Li, K.: Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometer as potential MRI contrast agents. J. Mater. Chem. 21, 2476 (2011).
25.Du, Q., Cai, H., Zhu, J., and Geng, T.: Preparation of Fe2O3 micro/nanomaterials by hydrothermal method and its magnetic properties. Bull. Korean Chem. Soc. 34, 3287 (2015).
26.Torres-Gómez, N., Nava, O., Argueta-Figueroa, L., García-Contreras, R., Baeza-Barrera, A., and Vilchis-Nestor, A.R.: Shape tuning of magnetite nanoparticles obtained by hydrothermal synthesis: Effect of temperature. J. Nanomater. 2019, 1 (2019).
27.Hyeon, T., Lee, S., Park, J., Chung, Y., and Na, H.: Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798 (2001).
28.Wu, W., Wu, Z., Yu, T., Jiang, C., and Kim, W.S.: Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16, 23501 (2015).
29.Chen, Z.: Size and shape controllable synthesis of monodisperse iron oxide nanoparticles by thermal decomposition of iron oleate complex. Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 42, 1040 (2012).
30.Hufschmid, R. and Arami, H.: Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7, 11142 (2015).
31.Fu, C. and Ravindra, N.: Magnetic iron oxide nanoparticles: Synthesis and applications. Bioinspired, Biomimetic Nanobiomater. 1, 229 (2015).
32.Kandasamy, G. and Maity, D.: Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm. 496, 191 (2015).
33.Hu, P., Chang, T., Chen, W.J., Deng, J., Li, S.L., Zuo, Y.G., Kang, L., Yang, F., Hostetter, M., and Volinsky, A.A.: Temperature effects on magnetic properties of Fe3O4 nanoparticles synthesized by the sol–gel explosion-assisted method. J. Alloys Compd. 773, 605 (2019).
34.Richard, S., Eder, V., Caputo, G., Journe, C., Ou, P., Bolley, J., Louedec, L., Guenin, E., Motte, L., Pinna, N., and Lalatonne, Y.: USPIO size control through microwave nonaqueous sol–gel method for neoangiogenesis T2 MRI contrast agent. Nanomedicine 11, 2769 (2016).
35.Masthoff, I., Kraken, M., Menzel, D., Litterst, F., and Garnweitner, G.: Study of the growth of hydrophilic iron oxide nanoparticles obtained via the non-aqueous sol–gel method. J. Sol–Gel Sci. Technol. 77, 553 (2016).
36.Lu, Y., Yin, Y., Mayers, B.T., and Xia, Y.: Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol–gel approach. Nano Lett. 2, 183 (2002).
37.Karimzadeh, I., Aghazadeh, M., Doroudi, T., Ganjali, M., and Kolivand, P.: Superparamagnetic iron oxide (Fe3O4) nanoparticles coated with PEG/PEI for biomedical applications: A facile and scalable preparation route based on the cathodic electrochemical deposition (CED) method. Adv. Phys. Chem. 5, 95 (2016).
38.Karimzadeh, I., Aghazadeh, M., Dalvand, A., Doroudi, T., Kolivand, P.H., Ganjali, M.R., and Norouzi, P.: Effective electrosynthesis and in situ surface coating of Fe3O4 nanoparticles with polyvinyl alcohol for biomedical applications. Mater. Res. Innovations 23, 1 (2019).
39.Starowicz, M., Starowicz, P., Zukrowski, J., Przewoznik, J., Lemanski, A., Kapusta, C., and Banas, J.: Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size. J. Nanopart. Res. 13, 7167 (2011).
40.Ismail, R.A., Sulaiman, G.M., and Abdulrahman, S.A.: Preparation of iron oxide nanoparticles by laser ablation in DMF under of external magnetic field. Int. J. Mod. Phys. B 30, 1650094 (2016).
41.Ismail, R.A., Sulaiman, G.M., Abdulrahman, S.A., and Marzoog, T.R.: Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater. Sci. Eng., C 53, 286 (2015).
42.Fazio, E., Santoro, M., Lentini, G., Franco, D., Guglielmino, S.P.P., and Neri, F.: Iron oxide nanoparticles prepared by laser ablation: Synthesis, structural properties and antimicrobial activity. Colloids Surf., A 490, 98 (2016).
43.Park, H., Mcconnell, J., Boddohi, S., Kipper, M., and Johnson, P.: Synthesis and characterization of enzyme-magnetic nanoparticle complexes: Effect of size on activity and recovery. Colloids Surf., B 83, 198 (2011).
44.Hui, C., Shen, C., Tian, J., Bao, L., Ding, H., Tian, Y., Shi, X., and Gao, H.: Core–shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale 3, 701 (2011).
45.Sonmez, M., Georgescu, M., Alexandrescu, L., Gurau, D., Ficai, A., Ficai, D., and Andronescu, E.: Synthesis and applications of Fe3O4/SiO2 core–shell materials. Curr. Pharm. Des. 21, 5324 (2015).
46.Fan, Q., Guan, Y., Zhang, Z., Xu, G., Yang, Y., and Guo, C.: A new method of synthesis well-dispersion and dense Fe3O4@SiO2 magnetic nanoparticles for DNA extraction. Chem. Phys. Lett. 715, 7 (2019).
47.Shahabadi, N., Khorshidi, A., Zhaleh, H., and Kashanian, S.: Synthesis, characterization, cytotoxicity and DNA binding studies of Fe3O4@SiO2 nanoparticles coated by an antiviral drug lamivudine. J. Drug Delivery Sci. Technol. 46, 55 (2018).
48.Stöber, W., Fink, A., and Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62 (1968).
49.Kulkarni, S.A., Sawadh, P.S., and Palei, P.K.: Synthesis and characterization of superparamagnetic Fe3O4@SiO2 nanoparticles. Adv. Mater. Res. 58, 46 (2014).
50.Mitra, H., Shahtahmassebi, N., Roknabadi, M., and Ghows, N.: Synthesis and study of structural and magnetic properties of superparamagnetic Fe3O4@SiO2 core/shell nanocomposite for biomedical applications. J. Nanomed. 1, 71 (2013).
51.Puscasu, E., Sacarescu, L., Lupu, N., Grigoras, M., Oanca, G., Balasoiu, M., and Creanga, D.: Iron oxide–silica nanocomposites yielded by chemical route and sol–gel method. J. Sol. Gel Sci. Technol. 3, 1 (2016).
52.Li, F., Yu, Z., Zhao, L., and Xue, T.: Synthesis and application of homogeneous Fe3O4 core/Au shell nanoparticles with strong SERS effect. RSC Adv. 6, 10352 (2016).
53.Lee, M.H., Leu, C.C., Lin, C.C., Tseng, Y.F., Lin, H.Y., and Yang, C.N.: Gold-decorated magnetic nanoparticles modified with hairpin-shaped DNA for fluorometric discrimination of single-base mismatch DNA. Microchim. Acta 186, 80 (2019).
54.Miao, P., Tang, Y., and Wang, L.: DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions. ACS Appl. Mater. Interfaces 9, 3940 (2017).
55.Zhao, J., Tu, K., Liu, Y., Qin, Y., Wang, X., Qi, L., and Shi, D.: Photo-controlled aptamers delivery by dual surface gold-magnetic nanoparticles for targeted cancer therapy. Mater. Sci. Eng., C 80, 88 (2017).
56.Chen, S., Liu, N., Yanyun, J., Xiong, C., and Dong, L.: In situ synthesis and antibacterial application of Fe3O4@Ag nanoparticles. J. Func. Mater. 48, 03097 (2017).
57.Shao, B., Ma, X., Zhao, S., Lv, Y., Hun, X., Wang, H., and Wang, Z.: Nanogapped Au(core)@Au–Ag(shell) structures coupled with Fe3O4 magnetic nanoparticles for the detection of Ochratoxin A. Anal. Chim. Acta 18, 53 (2018).
58.Stefan, M., Leostean, C., Pana, O., Soran, M., Suciu, R., Gautron, E., and Chauvet, O.: Synthesis and characterization of Fe3O4@ZnS and Fe3O4@Au@ZnS core–shell nanoparticles. Appl. Surf. Sci. 288, 180 (2014).
59.Portet, D., Denizot, B., Rump, E., Lejeune, J., and Jallet, P.: Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J. Colloid Interface Sci. 238, 37 (2001).
60.Soares, P., Laia, C., Carvalho, A., Pereira, L., Coutinho, J., Ferreira, I., Novo, C., and Borges, J.: Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications. Appl. Surf. Sci. 383, 240 (2016).
61.Zhang, L., He, R., and Gu, H.: Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 253, 2611 (2006).
62.Andreas, K., Georgieva, R., Ladwig, M., Mueller, S., Notter, M., Sittinger, M., and Ringe, J.: Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking. Biomaterials 33, 4515 (2012).
63.Saraswathy, A., Nazeer, S., Jeevan, M., Nimi, N., Arumugam, S., Harikrishnan, V., Varma, P., and Jayasreea, R.: Citrate coated iron oxide nanoparticles with enhanced relaxivity for in vivo magnetic resonance imaging of liver fibrosis. Colloids Surf., B 117, 216 (2014).
64.Ardelean, I., Stoencea, L., Ficai, D., Ficai, A., Trusca, R., Vasile, B., Nechifor, G., and Andronescu, E.: Development of stabilized magnetite nanoparticles for medical applications. J. Nanomater. 2017, 1 (2017).
65.Yamaura, M., Camilo, R., Sampaio, L., Macedo, M., Nakamura, M., and Toma, H.: Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 279, 210 (2008).
66.Jia, Y., Gao, Z., and Cui, J.: Preparation and characterization of two different amino-modified iron oxide magnetic nanoparticles and determination of the amount of amino on nanoparticle surface. J. Prev. Med. Chin. PLA 35, 1 (2017).
67.Teo, P., Wang, X., Chen, B., Zhang, H., Yang, X., Huang, Y., and Tang, J.: Complex of TNF-α and modified Fe3O4 nanoparticles suppresses tumor growth by magnetic induction hyperthermia. Cancer Biother.Radiopharm. 32, 379 (2017).
68.Khosroshahi, M. and Asemani, M.: Synthesis and characterization of hydrogel-based ferroscaffold containing fluorescein isothiocyanate (FITC) surface modified magnetite nanoparticles as optical marker. Adv. Nano Bio. M&D 1, 146 (2017).
69.Rowley, J. and Abu-Zahra, N.H.: Synthesis and characterization of polyethersulfone membranes impregnated with (3-aminopropyltriethoxysilane) APTES-Fe3O4 nanoparticles for As(V) removal from water. J. Environ. Chem. Eng. 7, 102875 (2019).
70.Sun, X. and Li, Y.: Functional modification and preparation of superparamagnetic Fe3O4. Adv. Mater. Res. 743, 183 (2013).
71.Ahangaran, F., Hassanzadeh, A., and Nouri, S.: Surface modification of Fe3O4@SiO2 microsphere by silane coupling agent. Int. Nano Lett. 3, 23 (2013).
72.Chen, T., Zhao, Y., Zhao, L., Du, J., and Xie, C.: Effect of modified Fe3O4 nanoparticles on the preparation of PMMA/Fe3O4 microspheres via suspension polymerization. IOP Conf. Ser.: Mater. Sci. Eng. 108, 1 (2017).
73.Xiong, Z., Li, S., and Xia, Y.: Highly stable water-soluble magnetic nanoparticles synthesized through combined co-precipitation, surface-modification, and decomposition of a hybrid hydrogel. New J. Chem. 40, 9951 (2016).
74.Cui, S., Shen, X., and Lin, B.: Surface organic modification of Fe3O4 nanoparticles by silane-coupling agents. Rare Met. 25, 426 (2006).
75.Gu, Y., Hou, C., Gao, P., and Deng, X.: Surface modification of hydrophilic Fe3O4 nanoparticles. Hebei Chem. Ind. 36, 1 (2013).
76.Radwan, M.A., Rashad, M.A., Sadek, M.A., and Elazab, H.A.: Synthesis, characterization and selected application of chitosan-coated magnetic iron oxide nanoparticles. J. Chem. Technol. Metall. 81, 303 (2019).
77.Shahidi, F. and Abuzaytoun, R.: Chitin, chitosan, and co-products: Chemistry, production, applications, and health effects. Adv. Food Nutr. Res. 49, 93 (2005).
78.Ziegler-Borowska, M., Chełminiak, D., and Kaczmarek, H.: Thermal stability of magnetic nanoparticles coated by blends of modified chitosan and poly (quaternary ammonium) salt. J. Therm. Anal. Calorim. 119, 499 (2015).
79.Vieira, A.P.M., Arias, L.S., Neto, F.N.S., Kubo, A.M., Lima, B.H.R., Camargo, E.R., Pessan, J.P., Delbem, A.C.B., and Monteiro, D.R.: Antibiofilm effect of chlorhexidine-carrier nanosystem based on iron oxide magnetic nanoparticles and chitosan. Colloids Surf., B 174, 224 (2019).
80.Safee, N., Abdullah, M., and Othman, M.: Carboxymethyl chitosan-Fe3O4 nanoparticles: Synthesis and characterization. Malaysian J. Anal. Sci. 14, 63 (2010).
81.Song, X., Luo, X., Zhang, Q., Zhu, A., Ji, L., and Yan, C.: Preparation and characterization of biofunctionalized chitosan/Fe3O4 magnetic nanoparticles for application in liver magnetic resonance imaging. J. Magn. Magn. Mater. 388, 116 (2015).
82.Boustani, K., Shayesteh, S., Salouti, M., Jafari, A., and Shal, A.: Synthesis, characterisation and potential biomedical applications of magnetic core–shell structures: Carbon-, dextran-, SiO2- and ZnO-coated Fe3O4 nanoparticles. New J. Chem. 12, 78 (2018).
83.Unterweǵer, H., László, D., Matuszak, J., Janko, C., Poettler, M., Jordan, J., Bäuerle, T., Szebeni, J., Fey, T., Boccaccini, A.R., Alexiou, C., and Cicha, I.: Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: Evaluation of size-dependent imaging properties, storage stability and safety. Int. J. Nanomed. 13, 1899 (2018).
84.Zhang, Q., Liu, Q., Du, M., Vermorken, A., Cui, Y., Zhang, L., Guo, L., Ma, L., and Chen, M.: Cetuximab and Doxorubicin loaded dextran-coated Fe3O4 magnetic nanoparticles as novel targeted nanocarriers for non-small cell lung cancer. J. Magn. Magn. Mater. 481, 122 (2019).
85.Qin, H., Xu, D., and Yang, S.: Dextran-coated Fe3O4 magnetic nanoparticles as a contrast agent in thermoacoustic tomography for hepatocellular carcinoma detection. J. Phys.: Conf. Ser. 277, 1 (2011).
86.Zhao, X., Cui, H., Chen, W., Wang, Y., Cui, B., Sun, C., Meng, Z., and Liu, G.: Morphology, structure and function characterization of PEI modified magnetic nanoparticles gene delivery system. PLoS One 9, 98919 (2014).
87.Karimzadeh, I., Aghazadeh, M., Ganjali, M., Doroudi, T., and Kolivand, P.: Preparation and characterization of iron oxide (Fe3O4) nanoparticles coated with polyvinylpyrrolidone/polyethylenimine through a facile one-pot deposition route. J. Magn. Magn. Mater. 433, 148 (2017).
88.Steitz, B., Hofmann, H., Kamau, S., Hassa, P., Hottiger, M., Rechenberg, B., Amtenbrink, M., and Fink, A.: Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction. J. Magn. Magn. Mater. 311, 300 (2007).
89.Arsianti, M., Lim, M., Marquis, C.P., and Amal, R.: Polyethylenimine based magnetic iron-oxide vector: The effect of vector component assembly on cellular entry mechanism, intracellular localization, and cellular viability. Biomacromolecules 11, 2521 (2010).
90.Topel, S., Topel, Ö., Bostancıoğlu, R., and Koparal, A.: Synthesis and characterization of Bodipy functionalized magnetic iron oxide nanoparticles for potential bioimaging applications. Colloids Surf., B 128, 245 (2015).
91.Tutuianu, R., Popescu, L., Preda, M., Rosca, A., Piticescu, R., and Burlacu, A.: Evaluation of the ability of nanostructured PEI-coated iron oxide nanoparticles to incorporate cisplatin during synthesis. Nanomaterials 7, 314 (2017).
92., T., Qi, D., Zhang, D., Zhang, C., and Zhao, H.: One-step synthesis of versatile magnetic nanoparticles for efficiently removing emulsified oil droplets and cationic and anionic heavy metal ions from the aqueous environment. Environ. Sci. Pollut. Res. 26, 6153 (2019).
93.Yang, J., Ping, Z., Yang, L., Cao, J., Sun, Y., Han, D., Yang, S., Wang, Z., Chen, G., Wang, B., and Kong, X.: A comprehensive study on the synthesis and paramagnetic properties of PEG-coated Fe3O4 nanoparticles. Appl. Surf. Sci. 303, 425 (2014).
94.Patsula, V., Tulinska, J., Trachtová, Š., Kuricova, M., Liskova, A., Španová, A., Ciampor, F., Vavra, I., Rittich, B., Ursinyova, M., Dusinska, M., Ilavska, S., Horvathova, M., Masanova, V., Uhnakova, I., and Horák, D.: Toxicity evaluation of monodisperse PEGylated magnetic nanoparticles for nanomedicine. Nanotoxicology 1, 1 (2019).
95.Zwart, S., Morgan, J., and Smith, S.: Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the international space station. Am. J. Clin. Nutr. 98, 217 (2013).
96.Mukhopadhyay, A., Joshi, N., Chattopadhyay, K., and De, G.: A facile synthesis of PEG-coated magnetite (Fe3O4) nanoparticles and their prevention of the reduction of cytochrome C. ACS Appl. Mater. Interfaces 4, 142 (2012).
97.Blyakhman, F.A., Buznikov, N.A., Sklyar, T.F., Safronov, A.P., Golubeva, E.V., Svalov, A.V., Sokolov, S.Y., Melnikov, G.Y., Orue, I., and Kurlyandskaya, G.V.: Mechanical, electrical and magnetic properties of ferrogels with embedded iron oxide nanoparticles obtained by laser target evaporation: Focus on multifunctional biosensor applications. Sensors 18, 872 (2018).
98.Dolci, M., Bryche, J.F., Leuvrey, C., Zafeiratos, S., Gree, S., Begin-Colin, S., Barbillon, G., and Pichon, B.P.: Robust clicked assembly based on iron oxide nanoparticles for a new type of SPR biosensor. J. Mater. Chem. 6, 9102 (2018).
99.Shah, S.T., Yehye, W.A., Saad, O., Simarani, K., Chowdhury, Z.Z., Alhadi, A.A., and Al-Ani, L.A.: Nanoparticles with gallic acid as potential antioxidant and antimicrobial agents. Nanomaterials 7, 306 (2017).
100.Lu, W., Ling, M., Jia, M., Huang, P., Li, C., and Yan, B.: Facile synthesis and characterization of polyethylenimine-coated Fe3O4 superparamagnetic nanoparticles for cancer cell separation. Mol. Med. Rep. 9, 1080 (2014).
101.Xu, H., Aguilar, Z.P., Yang, L., Kuang, M., Duan, H., Xiong, Y., Wei, H., and Wang, A.: Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials 32, 9758 (2011).
102.Zengin, A., Yildirim, E., Tamer, U., and Caykara, T.: Molecularly imprinted superparamagnetic iron oxide nanoparticles for rapid enrichment and separation of cholesterol. Analyst 138, 7238 (2013).
103.Yang, Y., Xu, Z., Jiang, J., Gao, Y., and Gu, W.: Poly(imidazole/DMAEA) phosphazene/DNA self-assembled nanoparticles for gene delivery: Synthesis and in vitro transfection. J. Control. Release 127, 273 (2008).
104.Lu, Y.: Progress of magnetic nanoparticles as gene vector. Biotechnol. Lett. 24, 736 (2013).
105.Wang, Y., Xu, C., and Ow, H.: Commercial nanoparticles for stem cell labeling and tracking. Theranostics 3, 544 (2013).
106.Riahi, R., Tamayol, A., Shaegh, S., Ghaemmaghami, A., Dokmeci, M., and Khademhosseini, A.: Microfluidics for advanced drug delivery systems. Curr. Opin. Chem. Eng. 7, 101 (2015).
107.Laurent, S., Forge, D., Port, M., Roch, A., Robic, R., Elst, L., and Robic, N.: Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 39, 2064 (2008).
108.Chen, B., Dai, W., He, B., Zhang, H., Wang, X., Wang, Y., and Zhang, Q.: Current multistage drug delivery systems based on the tumor microenvironment. Theranostics 7, 538 (2017).
109.Kader, R.A., Rose, L.C., Suhaimi, H., and Manickam, M.S.: Synthesis and toxicity test of magnetic nanoparticle via biocompatible microemulsion system as template for application in targeted drug delivery. AIP Conf. Proc. 1885, 020136 (2017).
110.Fan, C., Gao, W., Chen, Z., Fan, H., and Li, M.: Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles. Int. J. Pharm. 404, 180 (2010).
111.Jang, B., Park, S., Kang, S., Kim, J., and Kim, S.: Gold nanorods for target selective SPECT/CT imaging and photothermal therapy in vivo. Quant. Imag. Med. Surg. 2, 1 (2012).
112.Thomas, L., Dekker, L., and Kallumadil, M.: Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia. J. Mater. Chem. 19, 6529 (2009).
113.Moroz, P., Jones, S., and Gray, B.: Status of hyperthermia in the treatment of advanced liver cancer. J. Surg. Oncol. 77, 259 (2001).
114.Kita, E., Oda, T., Kayano, T., Sato, S., Minagawa, M., Yanagihara, H., Kishimoto, M., Mitsumata, C., Hashimoto, S., Yamada, K., and Ohkohchi, N.: Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy. J. Phys. D: Appl. Phys. 43, 2462 (2010).
115.Liu, T., Chang, G., Cao, R., and Meng, L.: Applications of superparamagnetic Fe3O4 nanoparticles in magnetic resonance imaging. Prog. Chem. 27, 601 (2015).
116.Chen, Y., Tao, J., Xiong, F., Zhu, J., Zhang, Y., Ding, Y., and Ge, L.: Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug Dev. Ind. Pharm. 36, 1235 (2010).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed