Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-23T07:16:15.472Z Has data issue: false hasContentIssue false

Synthesis of YBa2Cu3O7−x thin films by three-stage oxidation process from metallic Y–Ba–Cu precursors

Published online by Cambridge University Press:  31 January 2011

Takashi Hase
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 10-13 Shinonome, 1-Chome, Koto-ku, Tokyo 135, Japan
Ryusuke Kita
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 10-13 Shinonome, 1-Chome, Koto-ku, Tokyo 135, Japan
Kenichi Kawaguchi
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 10-13 Shinonome, 1-Chome, Koto-ku, Tokyo 135, Japan
Takeshi Koga
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 10-13 Shinonome, 1-Chome, Koto-ku, Tokyo 135, Japan
Tadataka Morishita
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 10-13 Shinonome, 1-Chome, Koto-ku, Tokyo 135, Japan
Get access

Abstract

Growth behavior of YBa2Cu3O7-x (YBCO) thin films from metallic Y–Ba–Cu precursors was investigated. The precursors were prepared by coevaporation of the constituent metallic sources under ultra-high vacuum conditions, and they were oxidized in a load lock chamber and a tube furnace. The grain size of YBCO and degree of crystallographic orientation of the films increased with decreasing oxygen partial pressure p(O2) during transformation of the precursor into the crystal close to the thermodynamic stability line of YBa2Cu3O6.0 in a p(O2) – 1/T phase diagram. The growth of YBCO crystal is controlled by the oxygen diffusion along the c-axis direction of the crystal. The diffusion coefficient of oxygen is determined as D = 1.94 × 1010 exp(−433 000/RT) (cm2/s).

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hase, T., Izumi, H., Ohata, K., Suzuki, K., Morishita, T., and Tanaka, S., J. Appl. Phys. 68, 374 (1991).CrossRefGoogle Scholar
2Shi, W., Shi, J., Sun, J., Yao, W., and Qi, Zh., Appl. Phys. Lett. 57, 822 (1990).CrossRefGoogle Scholar
3Schuhl, A., Cabanel, R., Lequien, S., Ghyselen, B., Tyc, S., Creuzet, G., and Siejka, J., Appl. Phys. Lett. 57, 819 (1990).CrossRefGoogle Scholar
4Davis, M.F., Wosik, J., Forster, K., Deshmukh, S.C., Rampersad, H.R., Shah, S., Siemsen, P., Wolfe, J. C., and Economou, D. J., J. Appl. Phys. 69, 7182 (1991).CrossRefGoogle Scholar
5Litchtenwalner, D. J., Scoble, C. N. II , Woolcott, R. R. Jr, Auciello, O., and Kingon, A. I., J. Appl. Phys. 70, 6952 (1991).CrossRefGoogle Scholar
6Kwo, J., Hsieh, T.C., Fleming, R.M., Hong, N., Liou, S.H., Davidson, B.A., and Feldman, L. C., Phys. Rev. B 36, 4039 (1987).CrossRefGoogle Scholar
7Komuro, M., Kozono, Y., Yazawa, Y., Ohno, T., Hanazono, M., Matsuda, S., and Sugita, Y., Jpn. J. Appl. Phys. 26, L1907 (1987).CrossRefGoogle Scholar
8Hase, T., Kajikawa, H., Kannan, H., Okuda, M., and Kawate, Y., in Extended Abstracts of 1989 Int. Supercond. Electronics Conf. (ISEC '89) (Jpn. Soc. Appl. Phys., Tokyo, 1989), p. 70.Google Scholar
9Gupta, D., Jain, H., and Siegel, R.W., Atomic Migration and Defects in Materials (Sci-Techpublications, 1991).CrossRefGoogle Scholar
10Feenstra, R., Lindemer, T.B., Budai, J.D., and Galloway, M.D., J. Appl. Phys. 69, 6569 (1991).CrossRefGoogle Scholar
11Mogro-Campero, A. and Turner, L. G., Appl. Phys. Lett. 58, 417 (1991).CrossRefGoogle Scholar
12Mogro-Campero, A., Turner, L. G., Kadin, A. M., and Mallory, D. S., Appl. Phys. Lett. 60, 3310 (1992).CrossRefGoogle Scholar
13Rupich, M.W., Liu, Y.P., and Ibechem, J., Appl. Phys. Lett. 60, 1384 (1992).CrossRefGoogle Scholar
14Manabe, T., Arai, K., Kondo, W., Mizuta, S., and Kumagai, T., J. Mater. Res. 7, 2337 (1992).CrossRefGoogle Scholar
15Hase, T., Kita, R., Koga, T., Sasaki, M., Morishita, T., and Tanaka, S., in Proc. 4th Int. Symp. Supercond. (ISS '91) (Springer-Verlag, Tokyo, 1991), p. 667.Google Scholar
16Hase, T., Kita, R., Koga, T., and Morishita, T., Physica C 194, 55 (1992).CrossRefGoogle Scholar
17Hase, T., Kita, R., Kawaguchi, K., Koga, T., and Morishita, T., (unpublished research).Google Scholar
18Bormann, R. and Nolting, J., Appl. Phys. Lett. 54, 2148 (1989).CrossRefGoogle Scholar
19Ann, B.T., Lee, V.Y., Beyers, R., Giir, T.M., and Huggins, R. A., Physica C 167, 529 (1990).Google Scholar
20Scolnik, Y., Sabatani, E., and Cahen, D., Physica C174, 273 (1991).CrossRefGoogle Scholar
21Rothman, S.J., Routbort, J.L., Welp, U., and Baker, J.E., Phys. Rev. B 44, 2326 (1991).CrossRefGoogle Scholar
22Tsukui, S., Yamamoto, T., Adachi, M., Oka, T., Shono, Y., Kawabata, K., Fukuoka, N., Yanase, A., Yoshioka, Y., and Tojo, F., in Proc. Int. Conf. Diffusion in Materials, Kyoto, Japan, 7-11 September, 1992, in press.Google Scholar
23Bredikhin, S.I., Emel'chenko, G.A., Shechtman, V.Sh., Zhokhov, A. A., Carter, S., Chater, R.J., Kilner, J. A., and Steele, B.C.H., Physica C 179, 286 (1991).CrossRefGoogle Scholar