Skip to main content Accessibility help

Synthesis of positively charged polyelectrolyte multilayer membranes for removal of divalent metal ions

  • Zhenping Qin (a1), Changle Geng (a1), Hongxia Guo (a2), Ziang Du (a3), Guojun Zhang (a3) and Shulan Ji (a3)...


Alternating layer-by-layer (LbL) deposition of polycations and polyanions on porous substrates is a convenient and versatile method for forming high-flux nanofiltration (NF) membranes. In this work, positively charged NF membranes were fabricated by the LbL assembly of poly(ethyleneimine) (PEI) and poly(sodium 4-styrenesulfonate) (PSS) on the modified polyacrylonitrile ultra-filtration substrate. The charge variation with each layer was characterized by zeta potential. ATR-FTIR, SEM, N2 adsorption and the weight changes with bi-layers were used to confirm the LbL deposition of the polyelectrolytes. NF performances of the prepared membrane with a number of bi-layers as well as solute concentrations were also investigated. The results of zeta potential showed that the whole multilayer films exhibited periodic variations in positive charge. NF results indicated that the rejection of Ni2+ and Cd2+ ions increased, while the permeate fluxes decreased with the number of bi-layers. And the rejections of the metal ion solutes were 98.02% for CuSO4, 95.53% for ZnSO4, 95.66% for NiCl2, 94.9% for CdCl2, along with permeation fluxes of 19.02, 19.72, 24.02, and 21.19 L/m2·h, respectively.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Yuan, T., Ping, Y., Rongjun, Q., Chunhua, W., Hegen, Z., and Zhongxi, Y.: Removal of transition metal ions from aqueous solutions by adsorption using a novel hybrid material silica gel chemically modified by triethylenetetraminomethylenephosphonic acid. Chem. Eng. J. 162, 573579 (2010).
2.Navarro, R.R., Wada, S., and Tatsumi, K.: Heavy metal precipitation by polycation–polyanion complex of PEI and its phosphonomethylated derivative. J. Hazard. Mater. 123, 203209 (2005).
3.Lee, I.H., Kuan, Y., and Chern, J.: Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin. J. Hazard. Mater. 138, 549559 (2006).
4.Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., and Zhang, Q.: Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 211212, 317331 (2012).
5.Kongsricharoern, N. and Polprasert, C.: Electrochemical precipitation of chromium (Cr6+) from an electroplating wastewater. Water Sci. Technol. 31, 109117 (1995).
6.Song, J., Oh, H., Kong, H., and Jang, J.: Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal. J. Hazard. Mater. 187, 311317.
7.Fane, A.G., Yeo, A., Law, A., Parameshwaran, K., Wicaksana, F., and Chen, V.: Low pressure membrane processes-doing more with less energy. Desalination 185, 159165 (2005).
8.Murthy, Z.V.P. and Chaudhari, L.B.: Rejection behavior of nickel ions from synthetic wastewater containing Na2SO4, NiSO4, MgCl2 and CaCl2 salts by nanofiltration and characterization of the membrane. Desalination 247, 610622 (2009).
9.Murthy, Z.V.P. and Chaudhari, L.B.: Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters. J. Hazard. Mater. 160, 7077 (2008).
10.Bouranene, S., Fievet, P., Szymczyk, A., Samarc, M.E., and Vidonne, A.: Influence of operating conditions on the rejection of cobalt and lead ions in aqueous solutions by a nanofiltration polyamide membrane. J. Membr. Sci. 325, 150157 (2008).
11.Ku, Y., Chen, S.W., and Wang, W.Y.: Effect of solution composition on the removal of copper ions by nanofiltration. Sep. Purif. Technol. 43, 135142 (2005).
12.Tanninen, J., Manttari, M., and Nystrom, M.: Nanofiltration of concentrated acidic copper sulphate solutions. Desalination 189, 9296 (2006).
13.Saitua, H., Campderros, M., Cerutti, S., and Padilla, A.P.: Effect of operating conditions in removal of arsenic from water by nanofiltration membrane. Desalination 172, 173180 (2005).
14.Al-Rashdi, B.A.M., Johnson, D.J., and Hilal, N.: Removal of heavy metal ions by nanofiltration. Desalination 315, 217 (2012).
15.Wahab, M.A., Hilal, N., and Nizam, A.S.M.: A study on producing composite nanofiltration membranes with optimized properties. Desalination 158, 7378 (2003).
16.Zhang, W., He, G., Gao, P., and Chen, G.: Development and characterization of composite nanofiltration membranes and their application in concentration of antibiotics. Sep. Purif. Technol. 30, 2735 (2003).
17.Veríssimo, S., Peinemann, K.V., and Bordado, J.: Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamide membranes. J. Membr. Sci. 279, 266275 (2006).
18.Zhong, P.S., Widjojo, N., Chung, T., Weber, M., and Maletzko, C.: Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater. J. Membr. Sci. 417418, 5260 (2012).
19.Freger, V., Gilron, J., and Belfer, S.: TFC polyamide membranes modified by grafting of hydrophilic polymers: An FT-IR/AFM/TEM study. J. Membr. Sci. 209, 283292 (2002).
20.Athanasekou, C.P., Romanos, G.E., Kordatos, K., Kasselouri-Rigopoulou, V., Kakizis, N.K., and Sapalidis, A.A.: Grafting of alginates on UF/NF ceramic membranes for wastewater treatment. J. Hazard. Mater. 182, 611623 (2010).
21.Kim, I.C., Yoon, H.G., and Lee, K.H.: Formation of integrally skinned asymmetric polyetherimide nanofiltration membranes by phase inversion process. J. Appl. Polym. Sci. 84, 13001307 (2002).
22.Mi, B., Coronell, O., Mariñas, B.J., Watanabe, F., Cahill, D.G., and Petrov, I.: Physico-chemical characterization of NF/RO membrane active layers by Rutherford backscattering spectrometry. J. Membr. Sci. 282, 7181 (2006).
23.Gohil, J.M. and Ray, P.: Polyvinyl alcohol as the barrier layer in thin film composite nanofiltration membranes: Preparation, characterization, and performance evaluation. J. Colloid Interface Sci. 338, 121127 (2009).
24.Wang, D.X., Su, M., Yu, Z.Y., Wang, X.L., Ando, M., and Shintani, T.: Separation performance of a nanofiltration membrane influenced by species and concentration of ions. Desalination 175, 219 (2005).
25.Wang, X.L., Tsuru, T., Nakao, S., and Kimura, S.: The electrostatic and sterichindrance model for the transport of charged solutes through nanofiltration membranes. J. Membr. Sci. 135, 19 (1997).
26.Du, R. and Zhao, J.: Properties of poly(N, N-dimethylaminoethyl methacrylate)/polysulfone positively charged composite nanofiltration membrane. J. Membr. Sci. 239, 183 (2004).
27.Ji, Y., An, Q., Zhao, Q., Chen, H., and Gao, C.: Preparation of novel positively charged copolymer membranes for nanofiltration. J. Membr. Sci. 376, 254265 (2011).
28.Ba, C.Y., Langer, J., and Economy, J.: Chemical modification of P84 copolyimide membranes by polyethylenimine for nanofiltration. J. Membr. Sci. 327, 4958 (2009).
29.Deng, H., Xu, Y., Chen, Q., Wei, X., and Zhu, B.: High flux positively charged nanofiltration membranes prepared by UV-initiated graft polymerization of methacrylatoethyl trimethyl ammonium chloride (DMC) onto polysulfone membranes. J. Membr. Sci. 366, 363372 (2009).
30.Bruening, M.L., Dotzauer, D.M., Jain, P., Ouyang, L., and Baker, G.L.: Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir 24, 76637673 (2008).
31.Sullivan, D.M. and Bruening, M.L.: Ultrathin, gas-selective polyimide membranes prepared from multilayer polyelectrolyte films. Chem. Mater. 15, 281287 (2003).
32.Wang, N., Zhang, G., Ji, S., Qin, Z., and Liu, Z.: The salt-, pH- and oxidant-responsive pervaporation behaviors of weak polyelectrolyte multilayer membranes. J. Membr. Sci. 354, 1422 (2010).
33.Ouyang, L., Malaisamy, R., and Bruening, M.L.: Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations. J. Membr. Sci. 310, 7684 (2008).
34.Malaisamy, R. and Bruening, M.L.: High-flux nanofiltration membranes prepared by adsorption of multilayer polyelectrolyte membranes on polymeric supports. Langmuir 21, 1058710592 (2005).
35.Deng, H., Xu, Y., Zhu, B., Wei, X., Liu, F., and Cui, Z.: Polyelectrolyte membranes prepared by dynamic self-assembly of poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) for nanofiltration (I). J. Membr. Sci. 323, 125133 (2008).
36.Hong, S.U., Malaisamy, R., and Bruening, M.L.: Optimization of flux and selectivity in Cl/SO42− separations with multilayer polyelectrolyte membranes. J. Membr. Sci. 283, 366372 (2006).
37.Ahmadiannamini, P., Li, X., Goyens, W., Meesschaert, B., and Vankelecom, I.F.J.: Multilayered PEC nanofiltration membranes based on SPEEK/PDDA for anion separation. J. Membr. Sci. 360, 250258 (2010).
38.Jin, W., Toutianoush, A., and Tieke, B.: Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes. Langmuir 19, 2550 (2003).
39.Stanton, B.W., Harris, J.J., Miller, M.D., and Bruening, M.L.: Ultrathin, multilayered polyelectrolyte films as nanofiltration membranes. Langmuir 19, 70387042 (2003).
40.Malaisamy, R., Talla-Nwafo, A., and Jones, K.L.: Polyelectrolyte modification of nanofiltration membrane for selective removal of monovalent anions. Sep. Purif. Technol. 77, 367374 (2011).
41.Michna, A., Adamczyk, Z., and Zembala, M.: Deposition of colloid particles on polyelectrolyte multilayers. Colloids Surf., A 302, 467 (2007).
42.Egueh, A.N.D., Lakard, B., Fievet, P., Lakard, S., and Buron, C.: Charge properties of membranes modified by multilayer polyelectrolyte adsorption. J. Colloid Interface Sci. 344, 221227 (2010).
43.Trybała, A., Szyk-Warszyńska, L., and Warszyński, P.: The effect of anchoring PEI layer on the build-up of polyelectrolyte multilayer films at homogeneous and heterogeneous surfaces. Colloids Surf., A 343, 127132 (2009).
44.Deng, S. and Ting, Y-P.: Characterization of PEI-modified biomass and biosorption of Cu(Ⅱ), Pb(Ⅱ) and Ni(Ⅱ). Water Res. 39, 21672177 (2005).
45.Nyström, M., Kaipia, L., and Luque, S.: Fouling and retention of nanofiltration membranes. J. Membr. Sci. 98, 249262 (1995).
46.Baticle, P., Kiefer, C., Lakhchaf, N., Larbot, A., Leclerc, O., Persin, M., and Sarrazin, J.: Salt filtration on gamma alumina nanofiltration membranes fired at two different temperatures. J. Membr. Sci. 283, 18 (1997).
47.Liu, J., Xu, Z., and Zhou, K.: Study on new method of the preparation of pure ammonium metatungstate (AMT) using a coupling process of neutralization–nanofiltration–crystallization. J. Membr. Sci. 240, 19 (2004).
48.Ji, Y., An, Q., Zhao, Q., Chen, H., Qian, J., and Gao, C.: Fabrication and performance of a new type of charged nanofiltration membrane based on polyelectrolyte complex. J. Membr. Sci. 357, 8089 (2010).
49.Peeters, J.M.M., Boom, J.P., Mulder, M.H.V., and Strathmann, H.: Retention measurements of nanofiltration membranes with electrolyte solutions. J. Membr. Sci. 145, 199209 (1998).
50.Huang, R., Chen, G., Yang, B., and Gao, C.: Positively charged composite nanofiltration membrane from quaternized chitosan by toluene diisocyanate cross-linking. Sep. Purif. Technol. 61, 424429 (2008).
51.Mehiguene, K., Garba, Y., Taha, S., Gondrexon, N., and Dorange, G.: Influence of operating conditions on the retention of copper and cadmium in aqueous solutions by nanofiltration: Experimental results and modelling. Sep. Purif. Technol. 15, 181187 (1999).
52.Murthy, Z.V.P. and Chaudhari, L.B.: Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using Spiegler–Kedem model. Chem. Eng. J. 150, 181187 (2009).
53.Garba, Y., Taha, S., Cabon, J.. Modeling of cadmium salts rejection through a nanofiltration membrane: Relationships between solute concentration and transport parameters. J. Membr. Sci. 211, 5158 (2003).
54.Paugam, L., Taha, S., Dorange, G., Jaouen, P., and Quéméneura, F.: Mechanism of nitrate ions transfer in nanofiltration depending on pressure, pH, concentration and medium composition. J. Membr. Sci. 231, 3746 (2004).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed