Skip to main content Accessibility help

Synthesis of porous Li2MnO3-LiNi1/3Co1/3Mn1/3O2 nanoplates via colloidal crystal template

  • Yong Jiang (a1), Hua Zhuang (a1), Qiliang Ma (a1), Zheng Jiao (a1), Haijiao Zhang (a1), Ruizhe Liu (a1), Yuliang Chu (a2) and Bing Zhao (a3)...


The porous Li1.2Ni0.13Co0.13Mn0.54O2 nanoplate is prepared by colloidal crystal template assembled by the poly (methyl methacrylate) (PMMA) beads. Scanning electron microscopy and transmission electron microscopy results show that the nanoplates of porous solid solution cathodes are composed of nanoparticles with a size range of 30 nm, which interweave together forming an open porous structure. Electrochemical tests show that porous Li1.2Ni0.13Co0.13Mn0.54O2 cathode could deliver higher discharge capacity than that of bulk Li1.2Ni0.13Co0.13Mn0.54O2 cathode at all C-rates. The enhanced structural stability reflected by high ratios of integrated Intensity I(003)/I(104) and lattice parameters c/a, high specific surface area, a fast reaction and ionic diffusion kinetics of the nanoplates are considered attributable to the improved electrochemical properties.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Johnson, C.S., Kim, J-S., Lefief, C., Li, N., Vaughey, J.T., and Thackeray, M.M.: The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1-x)LiMn0.5Ni0.5O2 electrodes. Electrochem. Commun. 6, 1085 (2004).
2.Liu, J., Wang, Q.Y., Jayan, B.R., and Manthiram, A.: Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. Electrochem. Commun. 12, 750 (2010).
3.Kang, S-H., Kempgens, P., Greenbaum, S., Kropf, A.J., Amine, K., and Thackeray, M.M.: Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5−xNi0.5−xCo2x, 0 ≤ x ≤ 0.5). J. Mater. Chem. 17, 2069 (2007).
4.Lu, Z. and Dahn, J.R.: Understanding the anomalous capacity of Li/Li [NixLi (1/3− 2x/3) Mn (2/3− x/3)]O2 cells using in situ x-ray diffraction and electrochemical studies. J. Electrochem. Soc. 149, A815 (2002).
5.Liu, J., Jayan, B.R., and Manthiram, A.: Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. J. Phys. Chem. C 114, 9528 (2010).
6.Yabuuchi, N., Yoshii, K., Myung, S.T., Nakai, I., and Komaba, S.: Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 133, 4404 (2011).
7.Yang, P.D., Zhao, D.Y., Margolese, D.I., Chmelka, B.F., and Stucky, G.D.: Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152 (1998).
8.Yang, P.D., Zhao, D.Y., Margolese, D.I., Chmelka, B.F., and Stucky, G.D.: Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 11, 2813 (1999).
9.Su, F.B., Zeng, J.H., Bai, P., Lv, L., Guo, P., Sun, H., Li, H., Yu, J., Lee, J., and Zhao, X.: Template synthesis of mesoporous carbon microfibers as a catalyst support for methanol electrooxidation. Ind. Eng. Chem. Res. 46, 9097 (2007).
10.Long, J.W., Sassin, M.B., Fischer, A.E., and Rolison, D.R.: Multifunctional MnO2−carbon nanoarchitectures exhibit battery and capacitor characteristics in alkaline electrolytes. J. Phys. Chem. C 113, 17595 (2009).
11.Wang, Z.Y., Kiesel, E.R., and Stein, A.: Silica-free syntheses of hierarchically ordered macroporous polymer and carbon monoliths with controllable mesoporosity. J. Mater. Chem. 18, 2194 (2008).
12.Wang, Z.Y., Fierke, M.A., and Stein, A.: Porous carbon/Tin (IV) oxide monoliths as anodes for lithium-ion batteries. J. Electrochem. Soc. 155, A658 (2008).
13.Lu, A.H., Schmidt, W., Spliethoff, B., and Schüth, F.: Synthesis of ordered mesoporous carbon with bimodal pore system and high pore volume. Adv. Mater. 15, 1602 (2003).
14.Yan, H., Blanford, C.F., Lytle, J.C., Carter, B., Smyrl, W.H., and Stein, A.: Influence of processing conditions on structures of 3D ordered macroporous metals prepared by colloidal crystal templating. Chem. Mater. 13, 4314 (2001).
15.Doherty, C.M., Caruso, R.A., Smarsly, B.M., and Drummond, C.J.: Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chem. Mater. 21, 2895 (2009).
16.Doherty, C.M., Caruso, R.A., and Drummond, C.J.: High performance LiFePO4 electrode materials: Influence of colloidal particle morphology and porosity on lithium-ion battery power capability. Energy Environ. Sci. 3, 813 (2010).
17.Wang, G.X., Liu, H., Liu, J., Qiao, S., Lu, G., Munroe, P., and Ahn, H.: Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv. Mater. 22, 4944 (2010).
18.Vu, A. and Stein, A.: Multiconstituent synthesis of LiFePO4/C composites with hierarchical porosity as cathode materials for lithium ion batteries. Chem. Mater. 23, 3237 (2011).
19.Yuvaraj, S., Fan-Yuan, L., Tsong-Huei, C., and Chuin-Tih, Y.: Thermal decomposition of metal nitrates in air and hydrogen environments. J. Phys. Chem. B 107, 1044 (2003).
20.Holland, B.T., Blanford, C.F., Do, T., and Stein, A.: Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem. Mater. 11, 795 (1999).
21.Wang, T.W., Sel, O., Djerdj, I., and Smarsly, B.: Preparation of a large mesoporous CeO2 with crystalline walls using PMMA colloidal crystal templates. Colloid Polym. Sci. 285, 1 (2006).
22.Liu, W., Farrington, G.C., Chaput, F., and Dunn, B.: Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the pechini process. J. Electrochem. Soc. 143, 879 (1996).
23.Tonti, D., Torralvo, M.J., Enciso, E., Sobrados, I., and Sanz, J.: Three-dimensionally ordered macroporous lithium manganese oxide for rechargeable lithium batteries. Chem. Mater. 20, 4783 (2008).
24.Yan, H.W., Blanford, C.F., Holland, B.T., Smyrl, W.H., and Stein, A.: General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion. Chem. Mater. 12, 1134 (2000).
25.Zheng, J.M., Wu, X.B., and Yang, Y.: A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery. Electrochim. Acta 56, 3071 (2011).
26.Lu, Z.H., Beaulieu, L.Y., Donaberger, R.A., Thomas, C.L., and Dahn, J.R.: Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2. J. Electrochem. Soc. 149, A778 (2002).
27.Johnson, C.S., Li, N., Vaughey, J.T., Hackney, S.A., and Thackeray, M.M.: Lithium-manganese oxide electrodes with layered-spinel composite structures xLi2MnO3·(1-x)Li1+yMn2-yO4 (0 < x <1, 0 ≤ y ≤ 0.33) for lithium batteries. Electrochem. Commun. 7, 528 (2005).
28.Pasero, D., McLaren, V., Souza, S.D., and West, A.R.: Oxygen nonstoichiometry in Li2MnO3: An alternative explanation for its anomalous electrochemical activity. Chem. Mater. 17, 345 (2005).
29.Chen, Z.H. and Dahn, J.R.: Effect of ZrO2 coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5V. Electrochem. Solid-State Lett. 5, A213 (2002).
30.Liu, X.M., Gao, W., and Ji, B.: Synthesis of LiNi1/3Co1/3Mn1/3O2 nanoparticles by modified Pechini method and their enhanced rate capability. J Sol-Gel Sci. Technol. 61, 56 (2012).
31.Kim, J.H., Park, C.W., and Sun, Y.K.: Synthesis and electrochemical behavior of Li[Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2 cathode material. Solid State Ionics 164, 43 (2003).
32.Subramanian, V., Karki, K., and Rambabu, B.: Synthesis and electrochemical properties of submicron LiNi0.5Co0.5O2. Solid State Ionics 175, 315 (2004).
33.Zhao, C.H., Kang, W.P., Xue, Q.B., and Shen, Q.: Polymerization-pyrolysis-assisted nanofabrication of solid solution Li1.2Ni0.13Co0.13Mn0.54O2 for lithium-ion battery cathodes. J. Nanopart. Res. 14, 1240 (2012).
34.Yu, C., Li, G.S., Guan, X.F., Zheng, J., Li, L.P., and Chen, T.W.: Composites Li2MnO3·LiMn1/3Ni1/3Co1/3O2: Optimized synthesis and applications as advanced high-voltage cathode for batteries working at elevated temperatures. Electrochim. Acta 81, 283 (2012).
35.Hong, Y.J., Choi, S.H., Sim, C.M., Lee, J.K., and Kang, Y.C.: Effect of boric acid on the properties of Li2MnO3·LiNi0.5Mn0.5O2 composite cathode powders prepared by large-scale spray pyrolysis with droplet classifier. MRS Bull. 47, 4359 (2012).
36.Sun, Y.K., Lee, M.J., Yoon, C.S., Hassoun, J., Amine, K., and Scrosati, B.: The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv. Mater. 24, 1192 (2012).
37.Lee, D-K., Park, S-H., Amine, K., Bang, H.J., Parakash, J., and Sun, Y-K.: High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method. J. Power Sources 162, 1346 (2006).
38.Santhanam, R. and Rambabu, B.: High rate cycling performance of Li1.05Ni1/3Co1/3Mn1/3O2 materials prepared by sol-gel and co-precipitation methods for lithium-ion batteries. J. Power Sources 196, 4313 (2010).

Related content

Powered by UNSILO

Synthesis of porous Li2MnO3-LiNi1/3Co1/3Mn1/3O2 nanoplates via colloidal crystal template

  • Yong Jiang (a1), Hua Zhuang (a1), Qiliang Ma (a1), Zheng Jiao (a1), Haijiao Zhang (a1), Ruizhe Liu (a1), Yuliang Chu (a2) and Bing Zhao (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.