Skip to main content Accessibility help
×
Home

Synthesis of N-TiO2/BiOI/RGO composites with significantly enhanced visible light photocatalytic activity

  • Limei Xue (a1), Fengzhi An (a1), Yanhao Yang (a2) and Yuan Ma (a3)

Abstract

In this work, four N-TiO2/bismuth oxyiodide (BiOI)/reduced graphene oxide (RGO) composite photocatalysts with different composite ratios were prepared using a hydrothermal method. The phase, surface structure, specific surface area, and light response were characterized by X-ray diffraction, X-ray photoelectron spectrum analysis, scanning electron microscopy, specific surface area and aperture analysis, and UV-vis diffuse reflection spectrum analysis. The results indicated that the N-TiO2/BiOI/RGO (NTGB) composite prepared with a mass ratio of 1:1:2 is a promising photocatalyst for the degradation of organic pollutants by using sunlight, with a specific surface area of 139.56 (m2/g), bandgap of 1.24 eV, and strong absorption with a smaller visible region. It has the best photocatalytic properties under visible light irradiation in the degradation of methylene blue (MB): the degradation rate of MB in the presence of light for 60 min reached 99.22%, and its photocatalytic performance was significantly higher than that of TiO2, N-TiO2, BiOI, N-TiO2/BiOI, BiOI/RGO, NTGB1, NTGB2, and NTGB4.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: 547417039@qq.com

Footnotes

Hide All

Contributing Editor: Limei Xue

Footnotes

References

Hide All
1.Zhang, H., Zhang, J.L., and Sun, R.J.: Preparation of magnetic and photocatalytic cenosphere deposited with Fe3O4/SiO2/Eu-doped TiO2 core/shell nanoparticles. J. Mater. Res. 23, 3700 (2015).
2.Fu, S.R., He, Y.M., and Wu, Q.: Visible-light responsive plasmonic Ag2O/Ag/g-C3N4 nanosheets with enhanced photocatalytic degradation of Rhodamine B. J. Mater. Res. 31, 2252 (2016).
3.Zhang, W., Wang, C., and Liu, X.: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 23, 1 (2017).
4.Yan, Y., Chen, T.R., and Zou, Y.C.: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 5, 1383 (2016).
5.Chabri, S., Dhara, A., and Show, B.: Mesoporous CuO–ZnO p–n heterojunction based nanocomposites with high specific surface area for enhanced photocatalysis and electrochemical sensing. Catal. Sci. Technol. 6, 3238 (2016).
6.Park, E.J., Jo, H.J., Kim, H.J., Cho, K., and Jung, J.: Effects of gamma-ray treatment on wastewater toxicity from a rubber products factory. Radioanal. Nucl. Chem. 277, 619 (2008).
7.Zheng, Z., Zheng, X.H., Wang, H.T., and Du, Q.G.: Macroporous graphene oxide-polymer composite prepared through pickering high internal phase emulsions. ACS Appl. Mater. Interfaces 5, 7974 (2013).
8.Gu, X., Li, L., Wang, Y., Dai, P., Wang, H., and Zhao, X.: Hierarchical tubular structures constructed from rutile TiO2 nanorods with superior sodium storage properties. Electrochim. Acta 211, 77 (2016).
9.Wang, X., Meng, Q., Wang, Y., Liang, H., Bai, Z., Wang, K., Lou, X., Cai, B., and Yang, L.: TiO2 hierarchical hollow microspheres with different size for application as anodes in high-performance lithium storage. Appl. Energy 175, 488 (2016).
10.Irie, H., Watanabe, Y., and Hashimoto, K.: Preparation, characterization and photocatalytic activity of composite catalyst K3PW12O40/TiO2. Phys. Chem. B 107, 5483 (2005).
11.Batzill, M., Morales, E.H., and Diebold, U.: First-principles study on electronic structure and optical properties of Ce-doped ZnO, CeN-co-doped TiO2 and transparent conductive oxide In4Sn3O12 and In4Ge3O12. Phys. Rev. Lett. 96, 026103 (2006).
12.Cristiana, D.V., Gianfranco, P., and Annabella, S.: The energy band structure of S-TiO2 was studied by first-principles method. Phys. Chem. 109, 11414 (2005).
13.Cristiana, D.V., Gianfranco, P., and Annabella, S.: Preparation characterization and photocatalytic properties of titanium dioxide doped with metal ions and metal ions. Chem. Mater. 17, 6656 (2005).
14.Wang, Z.M., Li, Y.M., and Liao, R.H.: Preparation and photocatalytic properties of NiO/TiO2 nanotubes by hydrothermal method. Acta Photonica Sin. 48, 031603 (2016).
15.Yang, H.J., Shao, M.Z., and Zhou, J.X.: Study on photocatalytic activity and light corrosion resistance of Ag2O/TiO2 heterostructure. J. Synth. Cryst. 46, 243 (2017).
16.Liu, C., Yang, Y., and Li, W.: A novel Bi2S3 nanowire@TiO2 nanorod heterogeneous nanostructure for photoelectrochemical hydrogen generation. Chem. Eng. J. 302, 717 (2016).
17.Li, X., Xia, T., and Xu, C.H.: Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. Catal. Today 225, 64 (2014).
18.Gao, S., Guo, C., and Lv, J.: A novel 3D hollow magnetic Fe3O4/BiOI heterojunction with enhanced photocatalytic performance for bisphenol A degradation. Chem. Eng. J. 307, 1055 (2017).
19.Li, X., Xia, J., and Zhu, W.: Facile synthesis of few-layered MoS2 modified BiOI with enhanced visible-light photocatalytic activity. Colloid. Surf. Physicochem. Eng. Asp. 511, 1 (2016).
20.Huang, F.P., Cui, M.L., and Guo, Y.Y.: Preparation and photocatalytic performance of TiO2-BiOI with high visible activity. Fine Chem. Eng. 36, 231 (2019).
21.Li, C.X., Yang, X., and Tan, G.W.: Preparation and photocatalytic performance of WO3/TiO2–RGO composites. J. Lanzhou Univ. Technol. 43, 25 (2017).
22.Lei, X., Wei, Y., and Guo, W.: One-pot solvothermal preparation and enhanced photocatalytic activity of metallic silver and graphene co-doped BiVO4 ternary systems. Appl. Surf. Sci. 332, 682 (2015).
23.Shah, S.: Single-step solvothermal syn-thesis of mesoporous Ag–TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale 5, 5093 (2013).
24.He, B.H., Zhou, M.J., and Hou, Z.H.: Facile synthesis of Ni3S2/rGO nanosheets composite on nickel foam as efficient electrocatalyst for hydrogen evolution reaction in alkaline media. J. Mater. Res. 3, 517 (2018).
25.Yu, Y.Y., Yu, M.Y., and Zhang, Y.: Preparation and doping mechanism of nitrogen-doped titanium dioxide powders. Chin. J. Inorg. Chem. 29, 1654 (2013).
26.Zhang, L., Zhao, C.C., and Gao, X.Y.: Preparation of MoS2/BiOI composite photocatalyst and its photocatalytic REDOX properties. Acta Chim. Sin. 11, 1 (2018).
27.Cui, Z.K., Zhang, F.L., and Zheng, Z.: In situ construction of BiOBr/Ag3PO4 composites with enhanced visible light photocatalytic performances. J. Mater. Res. 29, 3254 (2014).
28.Thommes, M., Kaneko, K., and Neimark Alexander, V.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 64, 1051 (2015).
29.Sharma, A. and Lee, B.K.: Integrated ternary nanocomposite of TiO2/NiO/reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol. J. Environ. Manage. 181, 563 (2016).
30.Wu, F.J., Li, X., and Liu, W.: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nano heterojunctions. Appl. Surf. Sci. 405, 60 (2017).
31.Burda, C. ,Lou, Y.B., and Chen, X.B.: Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3, 1049 (2003).

Keywords

Synthesis of N-TiO2/BiOI/RGO composites with significantly enhanced visible light photocatalytic activity

  • Limei Xue (a1), Fengzhi An (a1), Yanhao Yang (a2) and Yuan Ma (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed