Skip to main content Accessibility help

Synthesis of large scale MoS2 for electronics and energy applications

  • Nitin Choudhary (a1), Mumukshu D. Patel (a1), Juhong Park (a1), Ben Sirota (a1) and Wonbong Choi (a2)...


Layered molybdenum disulfide (MoS2) has attracted great attention owing to its unique properties. However, synthesizing large area thin film with high crystal quality and uniformity remains a challenge. The present study explores large scale MoS2 growth methods, i.e., two-step method of sputtering-chemical vapor deposition and direct sputtering method, and applies them to fabricate field effect transistors and supercapacitors, respectively. The thickness modulated MoS2 films by two-step method exhibited high field effect mobility [∼12.24 cm2/(V s)] and current on/off ratio (∼106). The direct sputtering of MoS2 demonstrated excellent electrochemical performance with a high capacitance (∼30 mF/cm2) and cyclic stability upto 5000 cycles. Our growth methods reported here for the large scale MoS2 with high uniformity can trigger the development of several important technologies in two-dimensional materials.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Late, D.J., Rout, C.S., Chakravarty, D., and Ratha, S.: Emerging energy applications of two-dimensional layered materials. Can. Chem. Trans. 3, 118 (2015).
2. Park, J., Jaeckel, B., and Parkinson, B.: Fabrication and investigation of nanostructures on transition metal dichalcogenide surfaces using a scanning tunneling microscope. Langmuir 22, 5334 (2006).
3. Chhowalla, M., Shin, H.S., Eda, G., Li, L., Loh, K.P., and Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263 (2013).
4. Ganatra, R. and Zhang, Q.: Few-layer MoS2: A promising layered semiconductor. ACS Nano 8, 4074 (2014).
5. Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutiérrez, H.R., Heinz, T.F., Hong, S.S., Huang, J., and Ismach, A.F.: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898 (2013).
6. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011).
7. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., and Kis, A.: Ultrasensitive photodetectors based on monolayer MoS2 . Nat. Nanotechnol. 8, 497 (2013).
8. Vabbina, P., Choudhary, N., Chowdhury, A., Sinha, R., Karabiyik, M., Das, S., Choi, W., and Pala, N.: Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction. ACS Appl. Mater. Interfaces 7, 15206 (2015).
9. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).
10. Wang, H., Lu, Z., Xu, S., Kong, D., Cha, J.J., Zheng, G., Hsu, P.C., Yan, K., Bradshaw, D., Prinz, F.B., and Cui, Y.: Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. U. S. A. 110, 19701 (2013).
11. Nicolosi, V., Chhowalla, M., Kanatzidis, M.G., Strano, M.S., and Coleman, J.N.: Liquid exfoliation of layered materials. Science 340, 1226419 (2013).
12. Das, S., Kim, M., Lee, J., and Choi, W.: Synthesis, properties, and applications of 2-D materials: A comprehensive review. Crit. Rev. Solid State Mater. Sci. 39, 231 (2014).
13. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).
14. van der Zande, A.M., Huang, P.Y., Chenet, D.A., Berkelbach, T.C., You, Y., Lee, G-H., Heinz, T.F., Reichman, D.R., Muller, D.A., and Hone, J.C.: Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554 (2013).
15. Choudhary, N., Kharat, D., and Kaur, D.: Structural, electrical and mechanical properties of magnetron sputtered NiTi/PZT/TiO x thin film heterostructures. Surf. Coat. Technol. 205, 3387 (2011).
16. Bromley, R.: The lattice vibrations of the MoS2 structure. Philos. Mag. 23, 1417 (1971).
17. Mak, K.F., Lee, C., Hone, J., Shan, J., and Heinz, T.F.: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
18. Park, J., Choudhary, N., Smith, J., Lee, G., Kim, M., and Choi, W.: Thickness modulated MoS2 grown by chemical vapor deposition for transparent and flexible electronic devices. Appl. Phys. Lett. 106, 012104 (2015).
19. Yim, C., O'Brien, M., McEvoy, N., Winters, S., Mirza, I., Lunney, J.G., and Duesberg, G.S.: Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Appl. Phys. Lett. 104, 103114 (2014).
20. Yoon, J., Park, W., Bae, G., Kim, Y., Jang, H.S., Hyun, Y., Lim, S.K., Kahng, Y.H., Hong, W., and Lee, B.H.: Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 9, 3295 (2013).
21. Li, X.L. and Li, Y.D.: Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chem. - Eur. J. 9, 2726 (2003).
22. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P.M., and Lou, J.: Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966 (2012).
23. Choudhary, N., Park, J., Hwang, J.Y., and Choi, W.: Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Appl. Mater. Interfaces 6, 21215 (2014).
24. Zeng, Z., Yin, Z., Huang, X., Li, H., He, Q., Lu, G., Boey, F., and Zhang, H.: Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 50, 11093 (2011).
25. Yang, Y., Fei, H., Ruan, G., Xiang, C., and Tour, J.M.: Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 26, 8163 (2014).
26. Christy, R.: Sputtered MoS2 lubricant coating improvements. Thin Solid Films 73, 299 (1980).
27. Muratore, C., Hu, J., Wang, B., Haque, M., Bultman, J., Jespersen, M., Shamberger, P., McConney, M., Naguy, R., and Voevodin, A.: Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Appl. Phys. Lett. 104, 261604 (2014).
28. Alam, T., Wang, B., Pulavarthy, R., Haque, M., Muratore, C., Glavin, N., Roy, A.K., and Voevodin, A.A.: Domain engineering of physical vapor deposited two-dimensional materials. Appl. Phys. Lett. 105, 213110 (2014).
29. Yu, Y., Li, C., Liu, Y., Su, L., Zhang, Y., and Cao, L.: Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 3, 1866 (2013).
30. Bertrand, P.: Orientation of rf-sputter-deposited MoS2 films. J. Mater. Res. 4, 180 (1989).
31. Soon, J.M. and Loh, K.P.: Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochem. Solid-State Lett. 10, A250 (2007).
32. Choudhary, N., Patel, M., Ho, Y., Dahotre, N.B., Lee, W., Hwang, J.Y., and Choi, W.: Directly deposited MoS2 thin film electrodes for high performance supercapacitors. J. Mater. Chem. A 3, 24049 (2015).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed