Skip to main content Accessibility help
×
Home

Synthesis of gold colloids by laser ablation in thiol-alkane solutions

  • Giuseppe Compagnini (a1), A. Alessandro Scalisi (a1), Orazio Puglisi (a1) and Corrado Spinella (a2)

Abstract

In this paper, we present a study on the formation of gold colloids by laser ablation of a gold metal target in alkanes and thiol-alkane solutions. The results show a decrease of the gold particles’ size up to 2 nm when thiol molecules are present in the liquid environment. The observation of a blue-shift of the surface plasmon resonance is discussed together with transmission electron microscopy analyses accounting the cluster size decrease and the stabilization of the obtained suspensions.

Copyright

Corresponding author

a)Address all correspondence to this author.e-mail: gcompagnini@unict.it

References

Hide All
1Mafuné, F., Kohno, J., Takeda, Y., Kondow, T. and Sawabe, H.: Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B 104, 9111 (2000).
2Mafuné, F., Kohno, J., Takeda, Y., Kondow, T. and Sawabe, H.: Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J. Phys. Chem. B 104, 8333 (2000).
3Mafuné, F., Kohno, J., Takeda, Y., Kondow, T. and Sawabe, H.: Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J. Phys. Chem. B 105, 5114 (2001).
4Sakai, T., Takeda, Y., Mafuné, F., Abe, M. and Kondow, T.: Monitoring growth of surfactant-free nanodroplets dispersed in water by single-droplet detection. J. Phys. Chem. B 107, 2921 (2003).
5Mafuné, F., Kohno, J., Takeda, Y. and Kondow, T.: Nanoscale soldering of metal nanoparticles for construction of higher-order structures. J. Am. Chem. Soc. 125, 1686 (2003).
6Simakin, A.V., Voronov, V.V., Shafeev, G.A., Brayner, R. and Bozon-Verduraz, F.: Nanodisks of Au and Ag produced by laser ablation in liquid environment. Chem. Phys. Lett. 348, 182 (2001).
7Dolgaev, S.I., Simakin, A.V., Voronof, V.V., Shafeev, G.A. and Bozon-Verduraz, F.: Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Surf. Sci. 186, 546 (2002).
8Tsuji, T., Iryo, K., Nishimura, Y. and Tsuji, M.: Preparation of metal colloids by a laser ablation technique in solution: Influence of laser wavelength on the ablation efficiency (II). J Photochem. Photobiol. A 145, 201 (2001).
9Kabashin, A.V. and Meunier, M.: Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys. 94, 7941 (2003).
10Brust, M., Walker, M., Bethell, D., Schiffrin, D.J. and Whyman, R.: Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 7, 801 (1994).
11Brust, M., Fink, J., Bethell, D., Schiffrin, D.J. and Kiely, C.J.: Synthesis and reactions of functionalized gold nanoparticles. J. Chem. Soc. Chem. Commun. 16, 1655 (1995).
12Compagnini, G., Scalisi, A.A. and Puglisi, O.: Ablation of noble metals in liquids: A method to obtain nanoparticles in a thin polymeric film. Phys. Chem. Chem. Phys. 4, 2787 (2002).
13Jordan, R., West, N., Ulman, A., Chou, Y.M. and Nuyken, O.: Nanocomposites by surface-initiated living cationic polymerization of 2-oxazolines on functionalized gold nanoparticles. Macromolecules 34, 1606 (2001).
14Wang, T., Zhang, D., Xu, W., Li, S. and Zhu, D.: New approach to the assembly of gold nanoparticles: Formation of stable gold nanoparticle ensemble with chainlike structures by chemical oxidation in solution. Langmuir 18, 8655 (2002).
15Cataliotti, R.S., Compagnini, G., Crisafulli, C., Minicò, S., Pignataro, B., Sassi, P. and Scirè, S.: Low-frequency Raman modes and atomic force microscopy for the size determination of catalytic gold clusters supported on iron oxide. Surf. Sci. 494, 75 (2001).
16Jia, J., Wang, B., Wu, A., Cheng, G., Li, Z. and Dong, S.: A method to construct a third-generation horseradish peroxidase biosensor: Self-assembling gold nanoparticles to three-dimensional sol-gel network. Anal. Chem. 74, 2217 (2002).
17Storhoff, J.J., Elghanian, R., Mucic, C., Mirkin, C.A. and Letsinger, R.L.: One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120, 1959 (1998).
18Mafuné, F. and Kondow, T.: Formation of small gold clusters in solution by laser excitation of interband transition. Chem. Phys. Lett. 372, 199 (2003).
19Mafuné, F., Kohno, J., Takeda, Y. and Kondow, T.: Formation of stable platinum nanoparticles by laser ablation in water. J. Phys. Chem. B 107, 4218 (2003).
20Mafuné, F., Kohno, J., Takeda, Y. and Kondow, T.: Dissociation and aggregation of gold nanoparticles under laser irradiation. J. Phys. Chem. B 105, 9050 (2001).
21Compagnini, G., Scalisi, A.A. and Puglisi, O.: Production of gold nanoparticles by laser ablation in liquid alkanes. J. Appl. Phys. 94, 7874 (2003).
22Takami, A., Kurita, H. and Koda, S.: Laser-induced size reduction of noble metal particles. J. Phys. Chem. B 103, 1226 (1999).
23Mie, G.: Contributions to the optics of turbid media, especially colloidal metal solutions. Ann. Phys. 25, 377 (1908).
24Gans, R.: Form of ultramicroscopic particles of silver. Ann. Phys. 47, 270 (1915).
25Kreibig, U. and Vollmer, M.: Optical Properties of Metal Clusters (Springer, Berlin, Germany, 1995)
26Link, S. and El-Sayed, M.A.: Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410 (1999).
27Westcott, S.L., Oldenburg, S.J., Lee, T.R. and Halas, N.J.: Construction of simple gold nanoparticle aggregates with controlled plasmon–plasmon interactions. Chem. Phys. Lett. 300, 651 (1999).
28Compagnini, G., Fragalà, M.E., D’Urso, L., Spinella, C. and Puglisi, O.: Formation and characterization of high-density silver nanoparticles embedded in silica thin films by in situ self-reduction. J. Mater. Res. 16, 2934 (2001).

Keywords

Related content

Powered by UNSILO

Synthesis of gold colloids by laser ablation in thiol-alkane solutions

  • Giuseppe Compagnini (a1), A. Alessandro Scalisi (a1), Orazio Puglisi (a1) and Corrado Spinella (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.