Skip to main content Accessibility help
×
Home

Synthesis of flower-like AgI/Bi5O7I hybrid photocatalysts with enhanced photocatalytic activity in rhodamine B degradation

  • Xiaole Jiang (a1), Yueying Ma (a1), Chunran Zhao (a1), Yijing Chen (a1), Min Cui (a1), Jingxiong Yu (a1), Ying Wu (a2) and Yiming He (a1)...

Abstract

Flower-like AgI/Bi5O7I hybrid photocatalysts were fabricated via a hydrothermal method and the subsequent heating process with AgI/Bi4O5I2 as the intermediate. X-ray powder diffraction, Raman, X-ray photoelectron spectroscopy, diffuse reflectance spectra, scanning electron microscopy, transmission electron microscopy, photoluminescence, and electrochemical methods were used to reveal the structure, elemental content, morphology, and charge separation capabilities of the as-prepared samples. The photocatalytic test showed that the AgI/Bi5O7I composites own much higher photoactivity than pure AgI and Bi5O7I. Based on the result of XPS analysis, the composite is believed to be the Ag/AgI/Bi5O7I system. Due to the suitable band potentials of AgI and Bi5O7I, the ternary system can form a heterojunction structure which works in a Z-scheme mechanism with Ag nanoparticles as the transfer media. The guided charge transfer in the composite prolongs the life time of charge carriers and eventually leads to the high photocatalytic activity of AgI/Bi5O7I. Additionally, the flower-like structure of the composite also contributes to the photocatalytic reaction.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: hym@zjnu.cn

References

Hide All
1.Wen, J.Q., Li, X., Liu, W., Fang, Y.P., Xie, J., and Xu, Y.H.: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).
2.Wen, J.Q., Xie, J., Chen, X.B., and Li, X.: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2017).
3.Ye, L., Su, Y., Jin, X., Xie, H., and Zhang, C.: Recent advances in BiOX (X = Cl, Br, and I) photocatalysts: Synthesis, modification, facet effects and mechanisms. Environ. Sci.: Nano 1, 90 (2014).
4.Huang, H., Xiao, K., Zhang, T.R., Dong, F., and Zhang, Y.H.: Rational design on 3D hierarchical bismuth oxyiodides via in situ self-template phase transformation and phase-junction construction for optimizing photocatalysis against diverse contaminants. Appl. Catal., B 203, 879 (2017).
5.Ye, P., Xie, J.J., He, Y.M., Zhang, L., Wu, T.H., and Wu, Y.: Hydrolytic synthesis of flowerlike BiOCl and its photocatalytic performance under visible light. Mater. Lett. 108, 168 (2013).
6.Zhang, X., Ai, Z.H., Jia, F.L., and Zhang, L.Z.: Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J. Phys. Chem. C 112, 747 (2008).
7.Chang, X.F., Huang, J., Tan, Q.Y., Wang, M., Ji, G.B., Deng, S.B., and Yu, G.: Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation. Catal. Commun. 10, 1957 (2009).
8.Zhao, J.L., Lv, X.W., Wang, X.X., Yang, J., Yang, X.J., and Lu, X.B.: Fabrication of BiOX (X = Cl, Br, and I) nanosheeted films by anodization and their photocatalytic properties. Mater. Lett. 158, 40 (2015).
9.Su, W., Wang, J., Huang, Y., Wang, W., Wu, L., Wang, X., and Liu, P.: Synthesis and catalytic performances of a novel photocatalyst BiOF. Scripta Mater. 60, 345 (2010).
10.Sun, D.F., Li, J.P., Feng, Z.H., He, L., Zhao, B., Wang, T.Y., Li, R.X., Yin, S., and Sato, T.: Solvothermal synthesis of BiOCl flower-like hierarchical structures with high photocatalytic activity. Catal. Commun. 51, 1 (2014).
11.Li, X., Yu, J.G., and Jaroniec, M.: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603 (2016).
12.Feng, Z., Zeng, L., Chen, Y.J., Ma, Y.Y., Zhao, C.R., Jin, R.S., Lu, Y., Wu, Y., and He, Y.M.: In-situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).
13.He, H.B., Xue, S.S., Wu, Z., Yu, C.L., Yang, K., Zhu, L.H., Zhou, W.Q., and Liu, R.Y.: Synthesis and characterization of robust Ag2S/Ag2WO4 composite microrods with enhanced photocatalytic performance. J. Mater. Res. 31, 2598 (2016).
14.He, Y.M., Zhang, L.H., Fan, M.H., Wang, X.X., Walbridge, M.L., Nong, Q.Y., Wu, Y., and Zhao, L.H.: Z-scheme SnO2−x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Sol. Energy Mater. Sol. Cells 137, 175 (2015).
15.Yan, J.T., Xu, M.Q., Chai, B., Wang, H.B., Wang, C.L., and Ren, Z.D.: In situ construction of BiOBr/Ag3PO4 composites with enhanced visible light photocatalytic performances. J. Mater. Res. 32, 1603 (2017).
16.Ye, L., Liu, J.Y., Jiang, Z., Peng, T.Y., and Zan, L.: Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl. Catal., B 142–143, 1 (2013).
17.Gopannagari, M., Kumar, D.P., Reddy, D.A., Hong, S., Song, M.I., and Kim, T.K.: In situ preparation of few-layered WS2 nanosheets and exfoliation into bilayers on CdS nanorods for ultrafast charge Carrier migrations toward enhanced photocatalytic hydrogen production. J. Catal. 351, 153 (2017).
18.Dai, X., Xie, M.L., Meng, S.G., Fu, X.L., and Chen, S.F.: Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation. Appl. Catal., B 158–159, 382 (2014).
19.Yang, Q., Huang, J., Zhong, J.B., Chen, J.F., Li, J.Z., and Sun, S.Y.: Charge separation behaviors of novel AgI/BiOI heterostructures with enhanced solar-photocatalytic performance. Curr. Appl. Phys. 17, 1202 (2017).
20.Zhang, J., Wu, W.C., Yan, S., Chu, G., Zhao, S.L., Wang, X., and Li, C.: Enhanced photocatalytic activity for the degradation of rhodamine B by TiO2 modified with Gd2O3 calcined at high temperature. Appl. Surf. Sci. 344, 249 (2015).
21.He, K.L., Xie, J., Luo, X.Y., Wen, J.Q., Ma, S., Li, X., Fang, Y.P., and Zhang, X.C.: Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts. Chin. J. Catal. 38, 240 (2017).
22.Sun, Y.J., Xiao, X., Dong, X.A., Dong, F., and Zhang, W.: Heterostructured BiOI@La(OH)3 nanorods with enhanced visible light photocatalytic NO removal. Chin. J. Catal. 38, 217 (2017).
23.Han, S.Q., Li, J., Yang, K.L., and Lin, J.: Fabrication of a β-Bi2O3/BiOI heterojunction and its efficient photocatalysis for organic dye removal. Chin. J. Catal. 36, 2119 (2015).
24.Sun, S.M., Wang, W.Z., Zhang, L., Zhou, L., Yin, W.Z., and Shang, M.: Visible light-induced efficient contaminant removal by Bi5O7I. Environ. Sci. Technol. 43, 2005 (2009).
25.Yang, J., Xu, L.J., Liu, C.L., and Xie, T.P.: Preparation and photocatalytic activity of porous Bi5O7I nanosheets. Appl. Surf. Sci. 319, 265 (2014).
26.Zhao, Z.H., Wang, M., Yang, T.Z., Fang, M.H., Zhang, L.N., Zhu, H.K., Tang, C., and Huang, Z.H.: In situ co-precipitation for the synthesis of an Ag/AgBr/Bi5O7I heterojunction for enhanced visible-light photocatalysis. J. Mol. Catal. A: Chem. 424, 8 (2016).
27.Zhang, L., Wang, W.Z., Sun, S.M., Zhang, Z.J., Xu, J.H., and Ren, J.: Photocatalytic activity of Er3+, Yb3+ doped Bi5O7I. Catal. Commun. 26, 88 (2012).
28.Cao, J., Li, X., Lin, H.L., Xu, B., Luo, B.Y., and Chen, S.F.: Low temperature synthesis of novel rodlike Bi5O7I with visible light photocatalytic performance. Mater. Lett. 76, 181 (2012).
29.Zhang, Y.F., Zhu, G.Q., Gao, J.Z., Zhu, R.L., Hojamberdiev, M., Wei, X.M., and Liu, P.: Synthesis of plasmonic enhance sphere-like Ag/AgI/Bi5O7I photocatalysts with improved visible-light responsive activity under LED light irradiation. J. Mater. Sci.: Mater. Electron. 28, 5460 (2017).
30.Chen, F., Yang, Q., Yao, F.B., Wang, S.N., Sun, J., An, H.X., Yi, K.X., Wang, Y.L., Zhou, Y.Y., Wang, L.L., Li, X.M., Wang, D.B., and Zeng, G.M.: Visible-light photocatalytic degradation of multiple antibiotics by AgI nanoparticle-sensitized Bi5O7I microspheres: Enhanced interfacial charge transfer based on Z-scheme heterojunctions. J. Catal. 352, 160 (2017).
31.Xiao, X., Xing, C.L., He, G.P., Zuo, X.X., Nan, J.M., and Wang, L.S.: Solvothermal synthesis of novel hierarchical Bi4O5I2 nanoflakes with highly visible light photocatalytic performance for the degradation of 4-tert-butylphenol. Appl. Catal., B 148–149, 154 (2014).
32.Liu, X.Z., Jiang, X.L., Chen, Z.Q., Yu, J.X., and He, Y.M.: Preparation of Bi3O4Br/BiOCl composite via ion-etching method and its excellent photocatalytic activity. Mater. Lett. 210, 194 (2018).
33.Cui, M., Yu, J.X., Lin, H.J., Wu, Y.W., Zhao, L.H., and He, Y.M.: In situ preparation of Z-scheme AgI/Bi5O7I hybrid and its excellent photocatalytic activity. Appl. Surf. Sci. 387, 912 (2016).
34.Liang, C.H., Terabe, K., Tsuruoka, T., Osada, M., Hasegawa, T., and Aono, M.: AgI/Ag heterojunction nanowires: Facile electrochemical synthesis, photoluminescence, and enhanced ionic conductivity. Adv. Funct. Mater. 17, 1466 (2007).
35.Xu, Y.G., Huang, S.Q., Ji, H.Y., Jing, L.Q., He, M.Q., Xu, H., Zhang, Q., and Li, H.M.: Facile synthesis of CNT/AgI with enhanced photocatalytic degradation and antibacterial ability. RSC Adv. 6, 6905 (2016).
36.Potlog, T., Duca, D., and Dobromir, M.: Temperature-dependent growth and XPS of Ag-doped ZnTe thin films deposited by close space sublimation method. Appl. Surf. Sci. 352, 33 (2015).
37.Yan, M., Wu, Y.L., Zhu, F.F., Hua, Y.Q., and Shi, W.D.: The fabrication of a novel Ag3VO4/WO3 heterojunction with enhanced visible light efficiency in the photocatalytic degradation of TC. Phys. Chem. Chem. Phys. 18, 3308 (2016).
38.Yu, J.X., Chen, Z.Q., Wang, Y., Ma, Y.Y., Feng, Z., Lin, H.J., Wu, Y., Zhao, L.H., and He, Y.M.: Synthesis of KNbO3/g-C3N4 composite and its new application in photocatalytic H2 generation under visible light irradiation. J. Mater. Sci. 53, 7453 (2018).
39.Cheng, H.F., Huang, B.B., Dai, Y., Qin, X.Y., and Zhang, X.Y.: One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances. Langmuir 26, 6618 (2010).
40.He, Y.M., Cai, J., Li, T.T., Wu, Y., Lin, H.J., Zhao, L.H., and Luo, M.F.: Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible light irradiation. Chem. Eng. J. 215–216, 721 (2013).
41.Khoa, N.T., Kim, S.W., Thuan, D.V., Tien, H.N., Hur, S.H., Kim, E.J., and Hahn, S.H.: Fast and effective electron transport in a Au–graphene–ZnO hybrid for enhanced photocurrent and photocatalysis. RSC Adv. 5, 63964 (2015).
42.Vadivela, S., Nirmalesh Naveenb, A., Kamalakannana, V.P., Caoc, P., and Balasubramaniana, N.: Facile large scale synthesis of Bi2S3 nano rods–graphene composite for photocatalytic photoelectrochemical and supercapacitor application. Appl. Surf. Sci. 351, 635 (2015).
43.Cui, M., Nong, Q.Y., Yu, J.X., Lin, H.J., Wu, Y., Jiang, X.L., Liu, X.Z., and He, Y.M.: Preparation, characterization, and photocatalytic activity of CdV2O6 nanorods decorated g-C3N4 composite. J. Mol. Catal. A: Chem. 423, 240 (2016).
44.Jin, X.X., Fan, X.Q., Tian, J.J., Cheng, R.L., Li, M.L., and Zhang, L.X.: MoS2 quantum dot decorated g-C3N4 composite photocatalyst with enhanced hydrogen evolution performance. RSC Adv. 6, 5266 (2016).
45.Yu, J.X., Chen, Z.Q., Zeng, L., Ma, Y.Y., Feng, Z., Wu, Y., Lin, H.J., Zhao, L.H., and He, Y.M.: Synthesis of carbon-doped KNbO3 photocatalyst with excellent performance for photocatalytic hydrogen production. Sol. Energy Mater. Sol. Cells 179, 45 (2018).
46.Dong, L.Z., He, Y.M., Li, T.T., Cai, J., Hu, W.D., Wang, S.S., Lin, H.J., Luo, M.F., Yi, X.D., Zhao, L.H., Weng, W.Z., and Wan, H.L.: A comparative study on the photocatalytic activities of two visible-light plasmonic photocatalysts: AgCl–SmVO4 and AgI–SmVO4 composites. Appl. Catal., A 472, 143 (2014).
47.Tu, S.H., Lu, M.L., Xiao, X., Zheng, C.X., Zhong, H., Zuo, X.X., and Nan, J.M.: Flower-like Bi4O5I2/Bi5O7I nanocomposite: Facile hydrothermal synthesis and efficient photocatalytic degradation of propylparaben under visible-light irradiation. RSC Adv. 6, 44552 (2016).
48.Li, G.T., Wong, K.H., Zhang, X.W., Hu, C., Yu, J.C., Chan, R.C.Y., and Wong, P.K.: Degradation of acid orange 7 using magnetic AgBr under visible light: The roles of oxidizing species. Chemosphere 76, 1185 (2009).
49.Zhao, L.H., Zhang, L.H., Lin, H.J., Nong, Q.Y., Cui, M., Wu, Y., and He, Y.M.: Fabrication and characterization of hollow CdMoO4 coupled g-C3N4 heterojunction with enhanced photocatalytic activity. J. Hazard. Mater. 299, 333 (2015).
50.Fu, S.R., He, Y.M., Wu, Q., Wu, Y., and Wu, T.H.: Visible-light responsive plasmonic Ag2O/Ag/gC3N4 nanosheets with enhanced photocatalytic degradation of Rhodamine B. J. Mater. Res. 31, 2252 (2015).
51.Yu, J.X., Chen, Z.Q., Chen, Q.Q., Wang, Y., Lin, H.J., Hu, X., Zhao, L.H., and He, Y.M.: Giant enhancement of photocatalytic H2 production over KNbO3 photocatalyst obtained via carbon doping and MoS2 decoration. Int. J. Hydrogen Energy 43, 4347 (2018).
52.Wang, Y.J., He, Y.M., Li, T.T., Cai, J., Luo, M.F., and Zhao, L.H.: Photocatalytic degradation of methylene blue on CaBi6O10/Bi2O3 composites under visible light. Chem. Eng. J. 189, 473 (2012).
53.Wang, D.F., Kako, T., and Ye, J.H.: Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under visible-light irradiation. J. Am. Chem. Soc. 130, 2724 (2008).

Keywords

Synthesis of flower-like AgI/Bi5O7I hybrid photocatalysts with enhanced photocatalytic activity in rhodamine B degradation

  • Xiaole Jiang (a1), Yueying Ma (a1), Chunran Zhao (a1), Yijing Chen (a1), Min Cui (a1), Jingxiong Yu (a1), Ying Wu (a2) and Yiming He (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed