Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T06:32:48.025Z Has data issue: false hasContentIssue false

Synthesis of carbon nitride crystals at high pressures and temperatures

Published online by Cambridge University Press:  31 January 2011

D. W. He
Affiliation:
Institute of Physics, Chinese Academy of Science, P.O. Box 603 (34),Beijing 100080, People's Republic of China
F. X. Zhang
Affiliation:
Institute of Physics, Chinese Academy of Science, P.O. Box 603 (34),Beijing 100080, People's Republic of China
X. Y. Zhang
Affiliation:
Institute of Physics, Chinese Academy of Science, P.O. Box 603 (34),Beijing 100080, People's Republic of China
Z. C. Qin
Affiliation:
Institute of Physics, Chinese Academy of Science, P.O. Box 603 (34),Beijing 100080, People's Republic of China
M. Zhang
Affiliation:
Institute of Physics, Chinese Academy of Science, P.O. Box 603 (34),Beijing 100080, People's Republic of China
R. P. Liu
Affiliation:
Institute of Physics, Chinese Academy of Science, P.O. Box 603 (34), Beijing 100080, People's Republic of China and Yan Shan University, Qinhuandao 006604, People's Republic of China
Y. F. Xu
Affiliation:
Institute of Physics, Chinese Academy of Science, P.O. Box 603 (34),Beijing 100080, People's Republic of China
W. K. Wang
Affiliation:
Institute of Physics, Chinese Academy of Science, P.O. Box 603 (34), Beijing 100080, People's Republic of China and Yan Shan University, Qinhuandao 006604, People's Republic of China
Get access

Abstract

Carbon nitride crystals have been synthesized from C3N4H4 in the presence of a nickel-based alloy or cobalt as a catalyst at high pressure of 7 GPa and temperature of about 1400 °C. Scanning electron microscopy showed rod-like, well-faceted crystals with size of several micrometers, and the N content in these carbon nitride crystals was 47–62%. X-ray diffraction indicated the crystals were composed of α–C3N4 and β–C3N4. The experimental lattice constants of α–C3N4 (a = 6.425 Å, c = 4.715 Å ) and β–C3N4 (a = 6.419 Å, c = 2.425 Å ) agree with ab initio calculations very well.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cohn, M. L., Phys. Rev. B 32, 7988 (1985).Google Scholar
2.Liu, A. Y. and Cohen, M. L., Science 245, 841 (1989).CrossRefGoogle Scholar
3.Liu, A. Y. and Wentzcovith, R. M., Phys. Rev. B 50, 10 362 (1994).CrossRefGoogle Scholar
4.Ortega, J. and Sankey, O. F., Phys. Rev. B 51, 2624 (1995).CrossRefGoogle Scholar
5.Teter, D. M. and Hemley, R. J., Science 271, 53 (1996).CrossRefGoogle Scholar
6.Côté, M. and Cohn, M. L., Phys. Rev. B 55, 5684 (1997).CrossRefGoogle Scholar
7.Cahn, R. W., Nature (London) 380, 104 (1996).Google Scholar
8.Weich, F., Widany, J., and Franuenheim, T., Phys. Rev. Lett. 78, 3326 (1997).CrossRefGoogle Scholar
9.Bhusari, D. M., Chen, C. K., Chen, K. H., Chen, T. J., Chen, L. C., and Lin, M. C., J. Mater. Res. 12, 322 (1997).Google Scholar
10.Chen, Y., Guo, L., and Wang, E. G., Philos. Mag. Lett. 75, 155 (1997).CrossRefGoogle Scholar
11.Welxon, M. R., J. Am. Ceram. Soc. 73, 1973 (1990).Google Scholar
12.Nguyen, J. H. and Jeanloz, R., Mater. Sci. Eng. A 209, 23 (1996).Google Scholar
13.He, D. W., Luo, X. J., and Din, L. Y., Chin. J. Atom. Mole. Phys. 12, 49 (1995).Google Scholar
14.Sharma, A. K., Ayyab, P., Multani, M. S., Adhi, K. P., Ogale, S. B., Sunderaraman, M., Upadhyay, D. D., and Banerjee, S., Appl. Phys. Lett. 69, 3489 (1996).Google Scholar
15.Rossini, F. D. and Wagman, D. D., Selected Values of Chemical Thermodynamic Properties (Washington, DC, 1952), p. 82.Google Scholar