Skip to main content Accessibility help
×
Home

Synthesis of boron carbide nanoparticles via spray pyrolysis

  • Beril Ozcelik (a1) and Celaletdin Ergun (a2)

Abstract

A continuous process was developed to synthesize submicron boron carbide particles from boric acid and sucrose-based precursor solutions using a home-made spray pyrolysis system. A control set of samples was also prepared for comparison purposes of the microstructure and morphology of the ones synthesized via the spray pyrolysis method. Moreover, nickel nitrate was used in a precursor solution to investigate its catalyst effects on the reaction kinetics of boron carbide formation. The boron carbide phase was observed in the particles synthesized with spray pyrolysis at a reactor temperature of 1550 °C. The average particle size was approximately 0.46 μm. No effect of nickel additions was observed as a catalyst in boron carbide formation. Computational fluid dynamics software was used to model and simulate the experimental system. Simulation results provided information about the residence time and the temperature distribution along the tube reactor.

Copyright

Corresponding author

a) Address all correspondence to these authors. e-mail: ergunce@itu.edu.tr
b) e-mail: bozcelik@ksu.edu.tr

References

Hide All
1. Hugh, O.P.: Handbook of Refractory Carbides and Nitrides Properties, Characteristics, Processing and Applications (Noyes Publications, New Jersey, 1996); p. 118.
2. Suri, A.K., Subramanian, C., Sonber, J.K., and Murthy, T.S.R.Ch.: Synthesis and consolidation of boron carbide: A review. Int. Mater. Rev. 55, 4 (2010).
3. Aselage, T.L., Emin, D., McCready, S.S., and Duncan, R.V.: Large enhancement of boron carbides' Seebeck coefficients through vibrational softening. Phys. Rev. Lett. 81, 2316 (1998).
4. Aselage, T.L., Emin, D., and McCready, S.S.: Conductivities and seebeck coefficients of boron carbides: Softening bipolaron hopping. Phys. Rev. B. 64, 054302 (2001).
5. Emin, D. and Aselage, T.L.: A proposed boron-carbide-based solid-state neutron detector. J. Appl. Phys. 97, 013529 (2005).
6. Guan, Z., Gutu, T., Yang, J., Yang, Y., Zinn, A.A., Li, D., and Xu, T.T.: Boron carbide nanowires: Low temperature synthesis and structural and thermal conductivity characterization. J. Mater. Chem. 22, 9853 (2012).
7. Wood, C., Emin, D., and Gray, P.E.: Thermal conductivity behavior of boron carbides. Phys. Rev. B. 31, 6811 (1985).
8. Emin, D.: Unusual properties of icosahedral boron-rich solids. J. Solid State Chem. 179, 2791 (2006).
9. Wood, C.: Boron carbides as high temperature thermoelectric materials. In Boron Rich Solids, Emin, D., Aselage, T., Beckel, C.L., Howard, I.A., and Wood, C. eds.; AIP Conf. Proc 140, American Institute of Physics: New York, 1986; p. 362.
10. Aselage, T.L.: In Mater. Res. Soc. Symp. Proc. (San Francisco, CA, 1991); p. 145.
11. Werheit, H.: In 25th Int. Conf. Thermoelectr. (Vienna, Austria, 2006); p. 159.
12. Wood, C.: Materials for thermoelectric energy conversion. Rep. Prog. Phys. 51, 459 (1988).
13. Du, X., Zhang, Z., Wang, Y., Wang, J., Wang, W., Wang, H., and Fu, Z.: Hot-pressing kinetics and densification mechanisms of boron carbide. J. Am. Ceram. Soc. 98, 1400 (2015).
14. Schwetz, K.A. and Grellner, G.W.: The influence of carbon on the microstructure and mechanical properties of sintered boron carbide. J. Less-Common Met. 82, 37 (1981).
15. Greskovich, C. and Rosolowski, L.H.: Sintering of covalent solids. J. Am. Ceram. Soc. 59, 336 (1976).
16. Dole, S.L. and Prochazka, S.: Densification and microstructure development in boron carbide. Ceram. Eng. Sci. Proc. 6, 1151 (1985).
17. Dole, S.L., Prochazka, S., and Doremus, R.H.: Microstructural coarsening during sintering of boron carbide. J. Am. Ceram. Soc. 72, 958 (1989).
18. Larsson, P., Axen, N., and Hogmark, S.: Improvements of the microstructure and erosion resistance of boron carbide with additives. J. Mater. Sci. 35, 3433 (2000).
19. Thevenot, F.: Boron carbide-a comprehensive review. J. Eur. Ceram. Soc. 6, 205 (1990).
20. Lee, H. and Speyer, R.F.: Pressureless sintering of boron carbide. J. Am. Ceram. Soc. 86, 1468 (1990).
21. Roy, T.K., Subramanian, C., and Suri, A.K.: Pressureless sintering of boron carbide. Ceram. Int. 32, 227 (2006).
22. Li, X., Jiang, D., Zhang, J., Lin, Q., Chen, Z., and Huang, Z.: Pressureless sintering of boron carbide with Cr3C2 as sintering additive. J. Eur. Ceram. Soc. 34, 1073 (2014).
23. Yin, J., Huang, Z., Liu, X., Zhang, Z., and Jiang, D.: Microstructure, mechanical and thermal properties of in situ toughened boron carbide-based ceramic composites codoped with tungsten carbide and pyrolytic carbon. J. Eur. Ceram. Soc. 33, 1647 (2013).
24. Xian-Wu, D., Zhi-Xiao, Z., Wei-Min, W., Zheng-Yi, F., and Hao, W.: Effect of particle size on densification and properties of hot-pressed boron carbide. J. Inorg. Mater. 28, 1062 (2013).
25. Ostapenko, I.T., Slezov, V.V., Tarasov, R.V., Kartsev, N.F., and Podtykan, V.P.: Densification of boron carbide powder during hot pressing. Sov. Powder Metall. Met. Ceram. 18, 312 (1979).
26. Yin, B.Y. and Wang, L.S.: Study on physical properties of hot-pressing sintering B4C ceramic. Atom Energy Sci. Technol. 38, 429 (2004).
27. Angers, R. and Beauvy, M.: Hot-Pressing of boron carbide. Ceram. Int. 10, 49 (1983).
28. Yue, X., Chen, B., Zhao, J., Wang, W., and Ru, H.: Microstructures and properties of B4C ceramics prepared by hot-pressing method. Rare Met. Mater. Eng. 40, 533 (2011).
29. Mashhadi, M., Taheri-Nassaj, E., and Sglavo, V.M.: Pressureless sintering of boron carbide. Ceram. Int. 36, 151 (2010).
30. Yamada, S., Hirao, K., Yamauchi, Y., and Kanzaki, S.: Mechanical and electrical properties of B4C–CrB2 ceramics fabricated by liquid phase sintering. Ceram. Int. 29, 299 (2003).
31. Levin, L., Frage, N., and Dariel, M.P.: Novel approach for the preparation of B4C-based cermets. Int. J. Refract. Met. Hard Mater. 18, 131 (2000).
32. Goldstein, A., Geffen, Y., and Goldenberg, A.: Boron carbide–zirconium boride in situ composites by the reactive pressureless sintering of boron carbide zirconia mixtures. J. Am. Ceram. Soc. 84, 642 (2001).
33. Zakhariev, Z. and Radev, D.: Properties of polycrystalline boron carbide sintered in the presence of W2B5 without pressing. J. Mater. Sci. Lett. 7, 695 (1988).
34. Ruh, R., Kearns, M., Zangvil, A., and Xu, Y.: Phase and property studies of boron carbide–boron nitride composites. J. Am. Ceram. Soc. 75, 864 (1992).
35. Tuffe, S., Dubois, J., Fantozzi, G., and Barbier, G.: Densification, microstructure and mechanical properties of TiB2–B4C based composites. Int. J. Refract. Met. Hard Mater. 14, 305 (1996).
36. Skorokhod, V. and Krstic, V.D.: High strength-high toughness B4C–TiB2 composites. J. Mater. Sci. Lett. 19, 237 (2000).
37. Mashhadi, M., Taheri-Nassaj, E., Sglavo, V.M., Sarpoolaky, H., and Ehsani, N.: Effect of Al addition on pressureless sintering of B4C. Ceram. Int. 35, 831 (2009).
38. Kim, H.W., Koh, Y.H., and Kim, H.E.: Densification and mechanical properties of B4C with Al2O3 as a sintering additives. J. Am. Ceram. Soc. 83(11), 2363 (2000).
39. Hayun, S., Kalabukhov, S., Ezersky, V., Dariel, M.P., and Frage, N.: Microstructural characterization of spark plasma sintered boron carbide ceramics. Ceram. Int. 36, 451 (2010).
40. Alizadeh, A., Taheri-Nassaja, E., and Ehsani, N.: Synthesis of boron carbide powder by a carbothermic reduction method. J. Eur. Ceram. Soc. 24, 3227 (2004).
41. Yanase, I., Ogawara, R., and Kobayashi, H.: Synthesis of boron carbide powder from polyvinyl borate precursor. Mater. Lett. 63, 91 (2009).
42. Welna, D.T., Bender, J.D., Wei, X., Sneddon, L.G., and Allcock, H.R.: Preparation of boron-carbide/carbon nanofibers from a poly(norbornenyldecaborane) single-source precursor via electrostatic spinning. Adv. Mater. 7, 859 (2005).
43. Hadian, A.M. and Bigdeloo, J.A.: The effect of time, temperature and composition on boron carbide synthesis by sol–gel method. J. Mater. Eng. Perform. 17, 44 (2008).
44. Ergun, C. and Yilmaz, S.: Patent No: Wo 2009/070131 A2, 2009.
45. Cakir, E., Ergun, C., Sahin, F.C., and Erden, I.: In situ synthesis of B4C/TiB2 composites from low cost sugar based precursor. Defect Diffus. Forum 297–301, 52 (2010).
46. Tao, B.X., Dong, L., Wang, X., Zhang, W., Nelson, B.J., and Li, X.: B4C-nanowires/carbon-microfiber hybrid structures and composites from cotton t-shirts. Adv. Mater. 22, 2055 (2010).
47. Messing, G.L., Zhang, S.C., and Jayanthi, G.V.: Ceramic powder synthesis by spray pyrolysis. J. Am. Ceram. Soc. 76, 2707 (1993).
48. Ozcelik, B.K. and Ergun, C.: Synthesis of ZnO nanoparticles by an aerosol process. Ceram. Int. 40, 7107 (2014).
49. Ozcelik, B.K. and Ergun, C.: Synthesis and characterization of iron oxide particles using spray pyrolysis technique. Ceram. Int. 41, 1994 (2015).
50. Ergun, C. and Ozcelik, B.K.: Effect of Ni on the synthesize boron carbide via aerosol method. Presented at the TMS 2015 Orlando FL, USA, 2015.
51. Ozcelik, B.K. and Ergun, C.: Boronated carbon and boron carbide synthesize via aerosol method. Presented at the Mater Sci Technol-14, Pittsburgh, USA, 2014.
52. Ozcelik, B.K., Ergun, C., and Dulger, O.: Synthesis and characterization of ZnO nanoparticles formed by spray pyrolysis process. Presented at the Int. Conference on Composites or Nano Eng ICCE-21, Tenerife, Spain, 2013.
53. Lenggoro, I.W., Hata, T., Iskandar, F., Lunden, M.M., and Okuyama, K.: An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor. J. Mater. Res. 15, 733 (2000).
54. Lenggoroa, I.W., Itoha, Y., Iidab, N., and Okuyama, K.: Control of size and morphology in NiO particles prepared by a low-pressure spray pyrolysis. Mater. Res. Bull. 38, 1819 (2003).
55. Chiang, C-Y., Aroh, K., and Ehrman, S.H.: Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting-part I: CuO nanoparticle preparation. Int. J. Hydrogen Energy 37, 4871 (2012).
56. Chen, C.Y., Tseng, T.K., Tsai, S.C., Lin, C.K., and Lin, H.M.: Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis. Ceram. Int. 34, 409 (2008).
57. Eslamian, M. and Ashgriz, N.: Effect of precursor, ambient pressure and temperature on the morphology, crystallinity and decomposition of powders prepared by spray pyrolysis and drying. Powder Technol. 167, 149 (2006).
58. Cho, J.S. and Rhee, S-H.: Formation mechanism of nano-sized hydroxyapatite powders through spray pyrolysis of a calcium phosphate solution containing polyethylene glycol. J. Eur. Ceram. Soc. 33, 233 (2013).
59. Pingali, K.C., Rockstraw, D.A., and Deng, S.: Silver nanoparticles from ultrasonic spray pyrolysis of aqueous silver nitrate. Aerosol Sci. Technol. 39, 1010 (2005).
60. Xiao, T.D., Gonsalves, K.E., Strutt, P.R., and Klemens, P.G.: Synthesis of Si(N,C) nanostructured powders from an organometallic aerosol using a hot-wall reactor. J. Mater. Sci. 28, 1334 (1993).
61. Yoshida, H., Deguchi, H., Kawano, M., Hashino, K., Inagaki, T., Ijichi, H., Horiuchi, M., Kawahara, K., and Suda, S.: Study on pyrolysing behavior of NiO–SDC composite particles prepared by spray pyrolysis technique. Solid State Ionics 178, 399 (2007).
62. Yang, S-Y. and Kim, S-G.: Characterization of silver and silver/nickel composite particles prepared by spray pyrolysis. Powder Technol. 146, 185 (2004).
63. Swihart, M.T.: Vapor-phase synthesis of nanoparticles. Curr. Opinion Colloid and Interface Sci. 8, 127 (2003).
64. Pratsinis, S.E., Skillas, G., Maisels, A., and Kodas, T.T.: Manufacturing of materials by aerosol processes. In Aerosol Measurement: Principles and Techniques, And Applications, Kulkarni, P., Baron, P.A., and Willeke, K., eds. (John Wiley & Sons, Hoboken, 2011); pp. 751770.
65. Olesik, J.W., Kinzer, J.A., and Harkleroad, B.: Inductively coupled plasma optical emission spectrometry using nebulizers with widely different sample consumption rates. Anal. Chem. 66, 2022 (1994).
66. Burgener, J.A.: Enhanced parallel path nebulizer with a large range of flow rates. US Patent: 6634572, 2003.
67. Augagneur, S., Medina, B., Szpunar, J., and Lobinski, R.J.: Determination of rare earth elements in wine by inductively coupled plasma mass spectrometry using a microconcentric nebulizer. J. Anal. At. Spectrom. 11, 713 (1996).
68. Liu, Y., Lopez-Avila, V., Zhu, J.J., Wiederin, D.R., and Beckert, W.F.: Capillary electrophoresis coupled on-line with inductively coupled plasma mass spectrometry for elemental speciation. Anal. Chem. 67, 2020 (1995).
69. Wang, L., May, S.W., Browner, R.F., and Pollock, S.H.: Low-flow interface for liquid chromatography–inductively coupled plasma mass spectrometry speciation using an oscillating capillary nebulizer. J. Anal. At. Spectrom. 11, 1137 (1996).
70. Sharp, B.L.: Pneumatic nebulizers and spray chambers for inductively coupled plasma spectrometry. A review. Part 2. Spray chambers. J. Anal. At. Spectrom. 3, 939 (1988).
71. Burke, S.D. and Danheiser, R.L.: Handbook of Reagents for Organic Synthesis, Oxidizing and Reducing Agents (John Wiley & Sons, Chicester, 1999); p. 246.
72. Todoli, J.L. and Mermet, J.M.: Liquid Sample Introduction in ICP Spectrometry, 1st ed. (Elsevier, Amsterdam, 2008).
73. Todoli, J.L. and Mermet, J.M.: Effect of the spray chamber design on steady and transient acid interferences in inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom. 15, 863 (2000).
74. ANSYS Inc.: Ansys Fluent 12.0 User's Guide, 2009.
75. Saidaminov, M.I., Maksimova, N.V., and Avdeev, V.V.: Expandable graphite modification by boric acid. J. Mater. Res. 27, 1054 (2012).
76. Khanra, A.K.: Production of boron carbide powder by carbothermal synthesis of gel material. Bull. Mater. Sci. 30, 93 (2007).
77. Kakiage, M., Tominaga, Y., Yanase, I., and Kobayashi, H.: Synthesis of boron carbide powder in relation to composition and structural homogeneity of precursor using condensed boric acid–polyol product. Powder Technol. 221, 257 (2012).
78. Pilladi, T.R., Ananthasivan, K., Anthonysamy, S., and Ganesan, V.: Synthesis of nanocrystalline boron carbide from boric acid–sucrose gel precursor. J. Mater. Sci. 47, 1710 (2012).
79. Mondal, S. and Banthia, A.K.: Low temperature synthetic route for boron carbide. J. Eur. Ceram. Soc. 25, 287 (2005).
80. Parsons, J.L. and Milberg, M.E.: Vibrational spectra of vitreous B2O3·xH2O. J. Am. Ceram. Soc. 43, 326 (1960).
81. Romanos, J., Beckner, M., Stalla, D., Tekeei, A., Suppes, G., Jalisatgi, S., Lee, M., Robertson, J.D., Firlej, L., Kuchta, B., Wexler, C., Pfeifer, P., and Yu, P.: Infrared study of boron–carbon chemical bonds in boron-doped activated carbon. Carbon 54, 208 (2013).
82. Kim, K.N. and Kim, S-G.: Nickel particles prepared from nickel nitrate with and without urea by spray pyrolysis. Powder Technol. 145, 155 (2004).
83. Milosevic, O., Mancic, L., Rabanal, M.E., Gomez, L.S., and Marinkovic, K.: Aerosol route in processing of nanostructured functional materials. KONA Powder and Part J. 27, 84 (2009).
84. Chhowalla, M., Yin, Y., Amaratunga, G.A.J., McKenzie, D.R., and Frauenheim, Th.: Boronated tetrahedral amorphous carbon (ta-C: B). Diam. Relat. Mater. 6, 207 (1997).
85. Vishwakarma, P.N., Prasad, V., Subramanyam, S.V., and Ganesan, V.: Structural morphology of amorphous conducting carbon film. Bull. Mater. Sci. 28, 609 (2005).
86. Jung, C-H., Lee, M-J., and Kim, C-J.: Preparation of carbon-free B4C powder from B2O3 oxide by carbothermal reduction process. Mater. Lett. 58, 609 (2004).
87. Takano, M., Itoh, A., Akabori, M., and Ogawa, T.: Oxygen solubility in dysprosium mononitride prepared by carbothermic synthesis. J. Alloys Compd. 327, 235 (2001).
88. Yang, B.H., Wang, J., Joseph, D.D., Hu, H.H., Pan, T-W., and Glowinski, R.: Migration of a sphere in tube flow. J. Fluid Mech. 540, 109 (2005).
89. Park, S.H., Kim, W.J., and Kim, S.S.: Thermophoretic transport and deposition of particles in vertical tube flow with variable wall temperature and thermal radiation. KSME Int. J. 13, 253 (1999).
90. Moore, M.J. and Crane, R.I.: Chapter 4. Deposition and Corrosion in Gas Turbine, Hart, A.B. and Cutler, A.J.B. eds.; John Wiley & Sons: New York, 1973; p. 34.
91. Nazarchuk, T.N. and Mekhanoshina, L.N.: The oxidation of boron carbide. Soviet Powder Metallurgy Metal Ceram. 3, 123 (1964).
92. Samsonov, G.V.: Chemical Properties and Analysis of Refractory Compounds (Consultants Bureau, New York, 1972).
93. Kosolapova, T. Va.: Carbides Properties, Production, and Applications (Plenum Press, New York, 1971).
94. Bigdeloo, J.A. and Hadian, A.M.: Synthesis of high purity micron size boron carbide powder from B2O3/C precursor. Int. J. Recent Trends in Eng. 1, 176 (2009).
95. Najafi, A., Golestani-Fard, F., Rezaie, H.R., and Ehsani, N.: A novel route to obtain B4C nano powder via sol–gel method. Ceram. Int. 38, 3583 (2012).
96. Speyer, R.F. and Lee, H.: Advances in pressureless densification of boron carbide. J. Mater. Sci. 39, 6017 (2004).
97. Tsai, S.C., Song, Y.L., Tsai, C.S., Yang, C.C., Chiu, W.Y., and Lin, H.M.: Ultrasonic spray pyrolysis for nanoparticles synthesis. J. Mater. Sci. 39, 3647 (2004).
98. Kim, J.H., Babushok, V.I., Germer, T.A., Mulholland, G.W., and Ehrman, S.H.: Co-solvent assisted spray pyrolysis for the generation of metal particles. J. Mater. Res. 18, 1614 (2003).
99. Reddy, E.S., Noudem, J.G., Hebert, S., and Goupil, C.: Fabrication and properties of four-leg oxide thermoelectric modules. J. Phys. D: Appl. Phys. 38, 3751 (2005).
100. Mori, T., Nishimura, T., Yamaura, K., and Takayama-Muromachi, E.: High temperature thermoelectric properties of a homologous series of n-type boron icosahedra compounds: A possible counterpart to p-type boron carbide. J. Appl. Phys. 101, 093714 (2007).
101. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J-K., Goddard, W.A. III, and Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008).
102. Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., and Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008).
103. Bux, S.K., Blair, R.G., Gogna, P.K., Lee, H., Chen, G., Dresselhaus, M.S., Kaner, R.B., and Fleurial, J-P.: Nanostructured bulk silicon as an effective thermoelectric material. Adv. Funct. Mater. 19, 2445 (2009).
104. Mahan, G.D.: In Solid State Physics: Advances in Research and Applications, Ehrenreich, H. and Spaepen, F. ed.; Academic Press: San Diego, CA, 1998; pp. 81157.
105. Szczech, J.R., Higgins, J.M., and Jin, S.: Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21, 4037 (2011).

Keywords

Related content

Powered by UNSILO

Synthesis of boron carbide nanoparticles via spray pyrolysis

  • Beril Ozcelik (a1) and Celaletdin Ergun (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.