Skip to main content Accessibility help
×
Home

Synthesis and texturization processes of (super)-hydrophobic fluorinated surfaces by atmospheric plasma

  • J. Hubert (a1), J. Mertens (a1), T. Dufour (a1), N. Vandencasteele (a1), F. Reniers (a1), P. Viville (a2), R. Lazzaroni (a2), M. Raes (a3) and H. Terryn (a3)...

Abstract

The synthesis and texturization processes of fluorinated surfaces by means of atmospheric plasma are investigated and presented through an integrated study of both the plasma phase and the resulting material surface. Three methods enhancing the surface hydrophobicity up to the production of super-hydrophobic surfaces are evaluated: (i) the modification of a polytetrafluoroethylene (PTFE) surface, (ii) the plasma deposition of fluorinated coatings and (iii) the incorporation of nanoparticles into those fluorinated films. In all the approaches, the nature of the plasma gas appears to be a crucial parameter for the desired property. Although a higher etching of the PTFE surface can be obtained with a pure helium plasma, the texturization can only be created if O2 is added to the plasma, which simultaneously decreases the total etching. The deposition of C x F y films by a dielectric barrier discharge leads to hydrophobic coatings with water contact angles (WCAs) of 115°, but only the filamentary argon discharge induces higher WCAs. Finally, nanoparticles were deposited under the fluorinated layer to increase the surface roughness and therefore produce super-hydrophobic hybrid coatings characterized by the nonadherence of the water droplet at the surface.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: freniers@ulb.ac.be

Footnotes

Hide All

This paper has been selected as an Invited Feature Paper.

Contributing Editor: Akira Nakajima

Footnotes

References

Hide All
1. Bhushan, B. and Jung, Y.C.: Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1 (2011).
2. Decker, E.L. and Garoff, S.: Contact line structure and dynamics on surfaces with contact angle hysteresis. Langmuir 13, 6321 (1997).
3. Öner, D. and McCarthy, T.J.: Ultrahydrophobic surfaces: Effects of topography length scales on wettability. Langmuir 16, 7777 (2000).
4. Zhai, L., Cebeci, F.C., Cohen, R.E., and Rubner, M.F.: Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett. 4, 1349 (2004).
5. Schondelmaier, D., Cramm, S., Klingeler, R., Morenzin, J., and Eberhardt, W.: Orientation and self-assembly of hydrophobic fluoroalkylsilanes. Langmuir 18, 6242 (2002).
6. Brinker, C.J. and Scherer, G.W.: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, Inc., San Diego, USA, 1990).
7. Ebnesajjad, S.: Introduction to Fluoropolymers: Materials, Technology, and Applications (Elsevier Inc., Oxford, England, 2013).
8. Morra, M., Occhiello, E., and Garbassi, F.: Contact angle hysteresis in oxygen plasma treated poly(tetrafluoroethylene). Langmuir 5, 872 (1989).
9. Ryan, M.E. and Badyal, J.P.S.: Surface texturing of PTFE film using nonequilibrium plasmas. Macromolecules 28, 1377 (1995).
10. Vandencasteele, N., Broze, B., Collette, S., De Vos, C., Viville, P., Lazzaroni, R., and Reniers, F.: Evidence of the synergetic role of charged species and atomic oxygen in the molecular etching of PTFE surfaces for hydrophobic surface synthesis. Langmuir 26, 16503 (2010).
11. Badey, J.P., Espuche, E., Sage, D., Chabert, B., Jugnet, Y., Batier, C., and Duc, T.M.: A comparative study of the effects of ammonia and hydrogen plasma downstream treatment on the surface modification of polytetrafluoroethylene. Polymer 37, 1377 (1996).
12. Pringle, S.D., Joss, V.S., and Hones, C.: Ammonia plasma treatment of PTFE under known plasma conditions. Surf. Interface Anal. 24, 821 (1996).
13. Liu, C.Z., Wu, J.Q., Ren, L.Q., Tong, J., Li, J.Q., Cui, N., Brown, N.M.D., and Meenan, B.J.: Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification. Mater. Chem. Phys. 85, 340 (2004).
14. Wilson, D.J., Williams, R.L., and Pond, R.C.: Plasma modification of PTFE surfaces. Part I: Surfaces immediately following plasma treatment. Surf. Interface Anal. 31, 385 (2001).
15. Sarani, A., De Geyter, N., Nikiforov, A.Y., Morent, R., Leys, C., Hubert, J., and Reniers, F.: Surface modification of PTFE using an atmospheric pressure plasma jet in argon and argon + CO2 . Surf. Coat. Technol. 206, 2226 (2012).
16. Kolska, Z., Reznickova, A., Hnatowicz, V., and Svorcik, V.: PTFE surface modification by Ar plasma and its characterization. Vacuum 86, 643 (2012).
17. Youxian, D., Griessert, H.J., Mau, A.W-H., Schmidt, R., and Liesegang, J.: Surface modification of poly(tetrafluoroethylene) by gas plasma treatment. Polymer 32, 1126 (1991).
18. Tanaka, K. and Kogoma, M.: Investigation of a new reactant for fluorinated polymer surface treatments with atmospheric pressure glow plasma to improve the adhesive strength. Int. J. Adhes. Adhes. 23, 515 (2003).
19. Zettsu, N., Itoh, H., and Yamamura, K.: Plasma-chemical surface functionalization of flexible substrates at atmospheric pressure. Thin Solid Films 516, 6683 (2008).
20. Stelmashuk, V., Biederman, H., Slavinska, D., Zemek, J., and Trchova, M.: Plasma polymer films rf sputtered from PTFE under various argon pressures. Vacuum 77, 131 (2005).
21. Golub, M.A., Wydeven, T., and Johnson, A.L.: Similarity of plasma-polymerized tetrafluoroethylene and fluoropolymer films deposited by rf sputtering of poly(tetrafluoroethylene). Langmuir 14, 2217 (1998).
22. Mathias, E. and Miller, G.H.: The decompostion of polytetrafluoroethylene in a glow discharge. J. Phys. Chem. 71, 2671 (1967).
23. Ryan, M.E., Fonseca, J.L., Tasker, S., and Badyal, J.P.S.: Plasma polymerization of sputtered poly(tetrafluoroethylene). J. Phys. Chem. 99, 7060 (1995).
24. Wilson, D.J., Eccles, A.J., Steele, T.A., Williams, R.L., and Pond, R.C.: Surface chemistry and wettability of plasma-treated PTFE. Surf. Interface Anal. 30, 36 (2000).
25. Salapare, H.S., Guittard, F., Noblin, X., Tagin de Givenchy, E., Celestini, F., and Ramos, H.J.: Stability of the hydrophilic and superhydrophobic properties of oxygen plasma-treated poly(tetrafluoroethylene) surfaces. J. Colloid Interface Sci. 396, 287 (2013).
26. Barshilia, H.C. and Gupta, N.: Superhydrophobic polytetrafluoroethylene surfaces with leaf-like micro-protrusions through Ar + O2 plasma etching process. Vacuum 99, 42 (2014).
27. Carbone, E.A.D., Boucher, N., Sferrazza, M., and Reniers, F.: How to increase the hydrophobicity of PTFE surfaces using an r.f. atmospheric-pressure plasma torch. Surf. Interface Anal. 42, 1014 (2010).
28. Trigwell, S., Boucher, D., and Calle, C.I.: Electrostatic properties of PE and PTFE subjected to atmospheric pressure plasma treatment; correlation of experimental results with atomistic modelling. J. Electrost. 65, 401 (2007).
29. Mackie, N.M., Castner, D.G., and Fisher, E.R.: Characterization of pulsed-plasma-polymerized aromatic films. Langmuir 14, 1227 (1998).
30. d'Agostino, R., Flamm, D.L., and Auciello, O.: Plasma Deposition, Treatment and Etching of Polymers (Academic Press, San Diego, USA, 1990).
31. Henry, F., Renaux, F., Coppée, S., Lazzaroni, R., Vandencasteele, N., Reniers, F., and Snyders, R.: Synthesis of superhydrophobic PTFE-like thin films by self-nanostructuration in a hybrid plasma process. Surf. Sci. 606, 1825 (2012).
32. Wang, Y-R., Ma, W-C., Lin, J-H., Lin, H-H., Tsai, C-Y., and Huang, C.: Deposition of fluorocarbon film with 1,1,1,2-tetrafluoroethane pulsed plasma polymerization. Thin Solid Films 570, 445 (2014).
33. Favia, P., Cicala, G., Milella, A., Palumbo, F., Rossini, P., and d'Agostino, R.: Deposition of super-hydrophobic fluorocarbon coatings in modulated RF glow discharges. Surf. Coat. Technol. 169170, 609 (2003).
34. Mackie, N.M., Dalleska, N.F., Castner, D.G., and Fisher, E.R.: Comparison of pulsed and continuous-wave deposition of thin films from saturated fluorocarbon/H2 inductively coupled rf plasmas. Chem. Mater. 9, 349 (1997).
35. d'Agostino, R., Favia, P., Kawai, Y., Ikegami, H., Sato, N., and Arefi-Khonsari, F.: Advanced Plasma Technology (Wiley-VCH, Germany, 2008).
36. Hopkins, J. and Babyal, J.P.S.: Nonequilibrium glow discharge fluorination of polymer surfaces. J. Phys. Chem. 99, 4261 (1995).
37. Strobel, M., Corn, S., Lyons, C.S., and Korba, G.A.: Plasma fluorination of polyolefins. J. Polym. Sci., Part A: Polym. Chem. 25, 1295 (1987).
38. Fanelli, F., Fracassi, F., and d'Agostino, R.: Atmospheric pressure PECVD of fluorocarbon coatings from glow dielectric barrier discharges. Plasma Processes Polym. 4, S430 (2007).
39. Fanelli, F., Fracassi, F., and d'Agostino, R.: Deposition and etching of fluorocarbon thin films in atmospheric pressure DBDs fed with Ar–CF4–H2 and Ar–CF4–O2 mixtures. Surf. Coat. Technol. 204, 1779 (2010).
40. Vinogradov, I.P. and Lunk, A.: Spectroscopic diagnostics of DBD in Ar/fluorocarbon mixtures—Correlation between plasma parameters and properties of deposited polymer films. Plasma Processes Polym. 2, 201 (2005).
41. Vinogradov, I.P., Dinkelmann, A., and Lunk, A.: Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD). Surf. Coat. Technol. 174175, 509 (2003).
42. Kim, S.H., Kim, J-H., Kang, B-K., and Uhm, H.S.: Superhydrophobic CFx coating via in-line atmospheric RF plasma of He−CF4−H2 . Langmuir 21, 12213 (2005).
43. Liu, D., Yin, Y., Li, D., Niu, J., and Fen, Z.: Surface modification of materials by dielectric barrier discharge deposition of fluorocarbon films. Thin Solid Films 517, 3656 (2009).
44. Nagai, M., Takai, O., and Hori, M.: Atmospheric pressure fluorocarbon-particle plasma chemical vapor deposition for hydrophobic film coating. Jpn. J. Appl. Phys. 45, L460 (2006).
45. Hsieh, C-T., Yang, S-Y., and Lin, J-Y.: Electrochemical deposition and superhydrophobic behavior of ZnO nanorod arrays. Thin Solid Films 518, 4884 (2010).
46. Wang, J., Li, A., Chen, H., and Chen, D.: Synthesis of biomimetic superhydrophobic surface through electrochemical deposition on porous alumina. J. Bionic Eng. 8, 122 (2011).
47. Balu, B., Kim, J.S., Breedveld, V., and Hess, D.W.: Tunability of the adhesion of water drops on a superhydrophobic paper surface via selective plasma etching. J. Adhes. Sci. Technol. 23, 361 (2009).
48. Shearer, J.C., Fisher, M.J., Hoogland, D., and Fisher, E.R.: Composite SiO2/TiO2 and amine polymer/TiO2 nanoparticles produced using plasma-enhanced chemical vapor deposition. Appl. Surf. Sci. 256, 2081 (2010).
49. Lakshmi, R.V., Bharathidasan, T., Pera, P., and Basu, B.J.: Fabrication of superhydrophobic and oleophobic sol–gel nanocomposite coating. Surf. Coat. Technol. 206, 3888 (2012).
50. Valipour Motlagh, N., Sargolzaei, J., and Shahtahmassebi, N.: Super-liquid-repellent coating on the carbon steel surface. Surf. Coat. Technol. 235, 241 (2013).
51. Charlot, A., Deschanels, X., and Toquer, G.: Submicron coating of SiO2 nanoparticles from electrophoretic deposition. Thin Solid Films 553, 148 (2014).
52. Ogihara, H., Xie, J., Okagaki, J., and Saji, T.: Simple method for preparing superhydrophobic paper: Spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency. Langmuir 28, 4605 (2012).
53. Zhang, Y., Ge, D., and Yang, S.: Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness. J. Colloid Interface Sci. 423, 101 (2014).
54. Fabbri, P., Messori, M., Montecchi, M., Pilati, F., Taurino, R., Tonelli, C., and Toselli, M.: Surface properties of fluorinated hybrid coatings. J. Appl. Polym. Sci. 102, 1483 (2006).
55. Kylian, O., Petr, M., Serov, A., Solar, P., Polonskyi, O., Hanus, J., Chouhourov, A., and Biederman, H.: Hydrophobic and super-hydrophobic coatings based on nanoparticles overcoated by fluorocarbon plasma polymer. Vacuum 100, 57 (2014).
56. Basu, B.J. and Kumar, V.D.: Fabrication of superhydrophobic nanocomposite coatings using polytetrafluoroethylene and silica nanoparticles. ISRN Nanotechnol. 2011, 803910 (2011).
57. Dufour, T., Hubert, J., Viville, P., Duluard, C.Y., Desbief, S., Lazzaroni, R., and Reniers, F.: PTFE surface etching in the post-discharge of a scanning RF plasma torch: Evidence of ejected fluorinated species. Plasma Processes Polym. 9, 820 (2012).
58. Hubert, J., Poleunis, C., Delcorte, A., Laha, P., Bossert, J., Lambeets, S., Ozkan, A., Bertrand, P., Terryn, H., and Reniers, F.: Plasma polymerization of C4Cl6 and C2H2Cl4 at atmospheric pressure. Polymer 54, 4085 (2013).
59. Hubert, J., Vandencasteele, N., Mertens, J., Viville, P., Dufour, T., Barroo, C., Visart de Bocarmé, T., Lazzaroni, R., and Reniers, F.: Chemical and physical effects of the carrier gas on the atmospheric pressure PECVD of fluorinated precursors. Plasma Processes Polym. (2015). doi: 10.1002/ppap.201500025.
60. Hubert, J., Dufour, T., Vandencasteele, N., Desbief, S., Viville, P., Lazzaroni, R., and Reniers, F.: Etching processes of polytetrafluoroethylene surfaces exposed to He and He–O2 atmospheric post-discharges. Langmuir 28, 9466 (2012).
61. Lagow, R.J.: Fluorinated functionalized polymers. U.S. Patent No. 4076916, 1978.
62. Dufour, T., Hubert, J., Vandencasteele, N., and Reniers, F.: Chemical mechanisms inducing a dc current measured in the flowing post-discharge of an RF He–O2 plasma torch. Plasma Sources Sci. Technol. 21, 045013 (2012).
63. Gavare, Z., Gott, D., Pipa, A.V., Ropcke, J., and Skudra, A.: Determination of the number densities of argon metastables in argon-hydrogen plasma by absorption and self-absorption methods. Plasma Sources Sci. Technol. 15, 391 (2006).
64. Li, Y., Chen, Z., and Pu, Y-K.: Density measurement of helium metastable states by absorption spectroscopy in an inductively coupled plasma. Plasma Processes Polym. 2, 581 (2005).
65. Sun, T.L., Feng, L., Gao, X.F., and Jiang, L.: Bioinspired surfaces with special wettability. Acc. Chem. Res. 38, 644 (2005).
66. Chen, Y. and Rodak, D.E.: Is the lotus leaf superhydrophobic? Appl. Phys. Lett. 86, 144101 (2005).
67. Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K., and Watanabe, T.: Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16, 5754 (2000).
68. Vandencasteele, N., Nisol, B., Viville, P., Lazzaroni, R., Castner, D.G., and Reniers, F.: Plasma-modified PTFE for biological applications: Correlation between protein-resistant properties and surface characteristics. Plasma Processes Polym. 7, 661 (2008).
69. Léveillé, V. and Coulombe, S.: Atomic oxygen production and exploration of reaction mechanisms in a He-O2 atmospheric pressure glow discharge torch. Plasma Processes Polym. 3, 587 (2006).
70. Gonzales, E. II, Barankin, M.D., Guschl, P.C., and Hicks, R.F.: Surface activation of poly(methyl methacrylate) via remote atmospheric pressure plasma. Plasma Processes Polym. 7, 482 (2010).
71. Massines, F., Gouda, G., Gherardi, N., Duran, M., and Croquesel, E.: The role of dielectric barrier discharge atmosphere and physics on polypropylene surface treatment. Plasmas Polym. 6, 35 (2001).
72. Nersisyan, G. and Graham, W.G.: Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium. Plasma Sources Sci. Technol. 13, 582 (2004).
73. Youngblood, J.P. and McCarthy, T.J.: Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma. Macromolecules 32, 6800 (1999).
74. Horie, M.: Plasma‐structure dependence of the growth mechanism of plasma‐polymerized fluorocarbon films with residual radicals. J. Vac. Sci. Technol., A 13, 2490 (1995).
75. Strobel, M., Lyons, C.S., and Mittal, K.L.: Plasma Surface Modification of Polymers: Relevance to Adhesion (VSP, Utrecht, The Netherlands, 1994).
76. Massines, F., Ségur, P., Gherardi, N., Khamphan, C., and Ricard, A.: Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: Diagnostics and modelling. Surf. Coat. Technol. 174175, 8 (2003).
77. Ricard, A.: Plasmas réactifs (Société française du vide, Paris, France, 1995).
78. Kobayashi, H., Bell, A.T., and Shen, M.: Plasma polymerization of saturated and unsaturated hydrocarbons. Macromolecules 7, 277 (1974).
79. Yasuda, H. and Hsu, T.: Some aspects of plasma polymerization investigated by pulsed R.F. discharge. J. Polym. Sci., Polym. Chem. Ed. 15, 81 (1977).
80. Batan, A., Nisol, B., Kakaroglou, A., De Graeve, I., Van Assche, G., Van Mele, B., Terryn, H., and Reniers, F.: The impact of double bonds in the APPECVD of acrylate-like precursors. Plasma Processes Polym. 10, 857 (2013).
81. Fridman, A.: Plasma Chemistry (Cambridge University Press, New-York, USA, 2008).
82. Eliasson, B. and Kogelschatz, U.: Modeling and applications of silent discharge plasmas. IEEE Trans. Plasma Sci. 19, 309 (1991).
83. Kunhardt, E.E.: Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas. IEEE Trans. Plasma Sci. 28, 189 (2000).
84. Simsek, E., Acatay, K., and Menceloglu, Y.Z.: Dual scale roughness driven perfectly hydrophobic surfaces prepared by electrospraying a polymer in good solvent–poor solvent systems. Langmuir 28, 14192 (2012).
85. Wu, J., Xia, J., Lei, W., and Wang, B-P.: Fabrication of superhydrophobic surfaces with double-scale roughness. Mater. Lett. 64, 1251 (2010).
86. Barthlott, W. and Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1 (1997).
87. Neinhuis, C. and Barthlott, W.: Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 79, 667 (1997).
88. Ming, W., Wu, D., van Benthem, R., and de With, G.: Superhydrophobic films from raspberry-like particles. Nano Lett. 5, 2298 (2005).
89. Fanelli, F., Mastrangelo, A.M., and Fracassi, F.: Aerosol-assisted atmospheric cold plasma deposition and characterization of superhydrophobic organic–inorganic nanocomposite thin films. Langmuir 30, 857 (2014).

Keywords

Related content

Powered by UNSILO

Synthesis and texturization processes of (super)-hydrophobic fluorinated surfaces by atmospheric plasma

  • J. Hubert (a1), J. Mertens (a1), T. Dufour (a1), N. Vandencasteele (a1), F. Reniers (a1), P. Viville (a2), R. Lazzaroni (a2), M. Raes (a3) and H. Terryn (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.