Skip to main content Accessibility help

Synthesis and photoluminescence properties of Eu3+-doped ZrO2 hollow spheres

  • Min Zhang (a1), Weiwei Zuo (a2), Meifang Zhu (a2), Dianguang Liu (a3), Yigao Chen (a3), Meng Zhu (a3), Haoran Hong (a3), Chengyu Yang (a3), Yiguang Wang (a3), Jinling Liu (a4) and Linan An (a5)...


ZrO2:Eu3+ hollow spheres were successfully fabricated with the resin microspheres as the template. The sample characterizations were carried out by means of x-ray diffraction (XRD), scanning electron microscope (SEM), and photoluminescence spectra. XRD results revealed that Eu3+-doped samples were pure t-ZrO2 phase after being calcined at 873 K. SEM results exhibited that this Eu3+ doped ZrO2 was hollow spheres; the diameter and thickness of which were about 450 and 50 nm, respectively. Upon excitation at 394 nm, the orange-red emission bands at the wave length longer than 570 nm were from 5D07FJ (J = 1, 2) transitions. The asymmetry ratio of (5D07F2)/(5D07F1) intensity is about 1.61, 1.26, 1.42, 1.42, 1.40, and 1.38 for the Eu3+ concentration 0.4, 0.7, 1.0, 1.5, 2.0, and 2.5 mol%, respectively. These values suggest that the asymmetry ratio of Eu3+ ions is independent of the doping concentration. The optimal doping concentration of Eu3+ ions in ZrO2 is 1.5 mol%. According to Dexter's theory, the critical distance between Eu3+ ions for energy transfer was determined to be 16 Å.


Corresponding author

a) Address all correspondence to these authors. e-mail:


Hide All

Co-first author

Contributing Editor: Xiaobo Chen



Hide All
1. Riwotzki, K., Meyssamy, H., and Schnablegger, H.: Liquid-Phase Synthesis of Colloids and Redispersible Powders of Strongly Luminescing LaPO4 :Ce,Tb Nanocrystals., Angew. Angew. Chem. Int. Ed. 40, 573576 (2001).
2. Sudhahar, S., Kumar, M.K., Jayaramakrishnan, V., Muralidharan, R., and Kumar, R.M.: Effect of Sm+ Rare Earth Ion on the Structural, Thermal, Mechanical and Optical Properties of Potassium Hydrogen Phthalate Single Crystals. J. Mater. Sci. Technol. 30, 1318 (2014).
3. Wang, W.X., Cheng, Z.Y., and Yang, P.P.: Patterning of YVO4:Eu3+ Luminescent Films by Soft Lithography. Adv. Funct. Mater. 21, 456463 (2011).
4. Penilla, E.H., Kodera, Y., and Garay, J.E.: Blue–Green Emission in Terbium-Doped Alumina (Tb:Al2O3) Transparent Ceramics. Adv. Funct. Mater. 23, 60366043 (2013).
5. Joo, J., Yu, T., and Kim, Y.W.: Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J. Am. Chem. Soc. 125, 65536557 (2003).
6. Liang, X.J., Liu, B.F., and Chen, N.: Growth and Photoluminescence Properties of Tetrapod-Shaped ZnO Microcrystals-Whiskers and Microrods. J. Mater. Sci. Technol. 25, 427432 (2009).
7. Liu, D.G. and Zhu, Z.F.: Photoluminescence properties of the Eu-doped alpha-Al2O3 microspheres. J. Alloys Compd. 583, 291294 (2014).
8. Rahman, M.M., Khan, M.K.R., Islam, M.R., Halim, M.A., Shahjahan, M., Hakim, M.A., Saha, D.K., and Khan, J.U.: Effect of Al Doping on Structural, Electrical, Optical and Photoluminescence Properties of Nano-Structural ZnO Thin Films. J. Mater. Sci. Technol. 28, 329335 (2012).
9. Liu, D.G.: Effects of Cr content and morphology on the luminescence properties of the Cr-doped alpha-Al2O3 powders. Ceram. Int. 39, 47654769 (2013).
10. Boyer, D. and Mahiou, R.: Powders and Coatings of LiYF4:Eu3+ Obtained via an Original Way Based on the Sol–Gel Process. Chem. Mater. 16, 25182521 (2004).
11. Deng, Z., Pi, X.D., Zhao, J.J., and Yang, D.: Photoluminescence from Silicon Nanocrystals in Encapsulating Materials. J. Mater. Sci. Technol. 29, 221224 (2013).
12. Jia, C.J., Sun, L.D., and You, L.P.: Selective Synthesis of Monazite- and Zircon-type LaVO4 Nanocrystals. J. Phys. Chem. B 109, 32843290 (2005).
13. Chen, Q., Chang, Y.Q., Shao, C.J., Zhang, J., Chen, J., Wang, M.W., and Long, Y.: Effect of Grain Size on Phase Transformation and Photoluminescence Property of the Nanocrystalline ZrO2 Powders Prepared by Sol-Gel Method. J. Mater. Sci. Technol. 30, 11031107 (2014).
14. Yu, L.X., Song, H.W., and Lu, S.Z.: Luminescent Properties of LaPO4:Eu Nanoparticles and Nanowires. J. Phys. Chem. B 108, 1669716702 (2004).
15. Rakov, N. and Maciel, G.S.: Enhancement of luminescence efficiency of f–f transitions from Tb3+ due to energy transfer from Ce3+ in Al2O3 crystalline ceramic powders prepared by low temperature direct combustion synthesis. Chem. Phys. Lett. 400, 553557 (2004).
16. Fan, Q.H., Li, P., Zheng, Z., Wu, W.S., and Liu, C.L.: Insights into sorption species of Eu(III) on γ-Al2O3 and bentonite under different pH: Studies at macro- and micro-scales. J. Radioanal. Nucl. Chem. 299, 17671775 (2014).
17. Xu, X.Y., Liu, Y.X., Lv, Z., Song, J.Q., He, M.Y., Wang, Q., Yan, L.J., and Li, Z.F.: Thermal study in Eu3+-doped boehmite nanofibers and luminescence properties of the corresponding Eu3+:Al2O3 . J. Therm. Anal. Calorim. 118, 15851592 (2014).
18. Li, G.G., Peng, C., and Li, C.X.: Shape-controllable synthesis and morphology-dependent luminescence properties of GaOOH:Dy3+ and beta-Ga2O3:Dy3+ . Inorg. Chem. 49, 14491457 (2010).
19. Jia, G., Huang, Y.J., and Song, Y.H.: Controllable Synthesis and Luminescence Properties of La(OH)3 and La(OH)3:Tb3+Nanocrystals with Multiform Morphologies. Eur. J. Inorg. Chem. 2009, 37213726 (2009).
20. Blasse, G. and Grabmaier, B.C.: Luminescent Materials (Springer, Berlin, 1994).
21. Blasse, G.: Energy Transfer in Oxidic Phosphors. Philips Res. Rep. 24, 131143 (1969).
22. Podhorodecki, A., Banski, M., Misiewicz, J., and Serafińczuk, J.: Influence of Annealing on Excitation of Terbium Luminescence in YAlO3 Films Deposited onto Porous Anodic Alumina Semiconductor Devices, Materials, and Processing. J. Electrochem. Soc. 157, H628 (2010).
23. Gaponenko, N.V., Molchan, I.S., Sergeev, O.V., and Thompson, G.E.: Enhancement of Green Terbium-Related Photoluminescence from Highly Doped Microporous Alumina Xerogels in Mesoporous Anodic Aluminasensors and Displays: Principles, Materials, and Processing. J. Electrochem. Soc. 149, H49 (2002).
24. Li, Q., Ai, D., Dai, X., and Wang, J.: Photoluminescence of nanometer zirconia powders. Powder Technol. 137, 3440 (2003).
25. Du, W., Zhu, Z., Zhang, X., Wang, D., Liu, D., Qian, X., and Du, J.: RE/ZrO2 (RE = Sm, Eu) composite oxide nano-materials: Synthesis and applications in photocatalysis. Mater. Res. Bull. 48, 37353742 (2013).
26. Marin, R., Sponchia, G., Zucchetta, E., Riello, P., De Portu, G., Enrichi, F., and Benedetti, A.: Monitoring the tm Martensitic Phase Transformation by Photoluminescence Emission in Eu3+-Doped Zirconia Powders. J. Am. Ceram. Soc. 96, 26282635 (2013).
27. Gao, X., He, D., Jiao, H., Chen, J., and Meng, X.: Fabrication of SiO2@ZrO2@Y2O3:Eu3+ Core-Multi-Shell Structured Phosphor. J. Nanosci. Nanotechnol. 8, 69636968 (2011).
28. Liu, J., Qiao, S., Liu, H., Chen, J., Orpe, A., Zhao, D., and Lu, G.: Extension of the Stöber Method to the Preparation of Monodisperse Resorcinol–Formaldehyde Resin Polymer and Carbon Spheres. Angew. Chem. 123, 60696073 (2011).
29. Chen, D., Liu, J., Wang, P., Zhang, L., Ren, J., Tang, F., and Wu, W.: Fabrication of monodisperse zirconia-coated core–shell and hollow spheres in mixed solvents. Colloids Surf., A 302, 461466 (2007).
30. Lin, F., Dong, W., Liu, C., Liu, Z., and Li, M.: In situ source–template-interface reaction route to hollow ZrO2 microspheres with mesoporous shells. J. Colloid Interface Sci. 323, 365371 (2008).


Related content

Powered by UNSILO

Synthesis and photoluminescence properties of Eu3+-doped ZrO2 hollow spheres

  • Min Zhang (a1), Weiwei Zuo (a2), Meifang Zhu (a2), Dianguang Liu (a3), Yigao Chen (a3), Meng Zhu (a3), Haoran Hong (a3), Chengyu Yang (a3), Yiguang Wang (a3), Jinling Liu (a4) and Linan An (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.