Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T10:07:11.169Z Has data issue: false hasContentIssue false

Synthesis and characterization of multilayer graphene oxide on yttria-zirconia ceramics for dental implant

Published online by Cambridge University Press:  04 August 2020

Cheng Zhang
Affiliation:
Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan250061, P.R. China
Zhaoliang Jiang*
Affiliation:
Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan250061, P.R. China
Li Zhao
Affiliation:
Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan250061, P.R. China
Wenping Liu
Affiliation:
Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan250061, P.R. China
Pengchao Si
Affiliation:
SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan250061, P. R. China
Jing Lan
Affiliation:
Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan250012, P.R. China Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering, Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan250012, P.R. China
*
a)Address all correspondence to this author. e-mail: jiangzhaoliang@sdu.edu.cn
Get access

Abstract

In order to expand the family and improve the bioactivity of oral implant ceramics, the phase structures, mechanical and wetting properties of the hot-pressed yttria-zirconia/multilayer graphene oxide composite (3Y-ZrO2/GO) ceramics were investigated. GO was uniformly distributed in 3Y-ZrO2 powders, forming the C–O–Zr bond during the sintering process. In comparison to raw 3Y-ZrO2 ceramics, the flexural strength and fracture toughness improved up to 200% (1489.96 ± 35.71 MPa) in ZG3 (with 0.15 wt% GO) and 40.9% (8.95 ± 0.59 MPa m1/2) in ZG2 (with 0.1 wt% GO), respectively, while the relative density and Vickers hardness increased slightly. The toughening mechanisms included crack deflection, crack bridging, and GO put-out. Meanwhile, the composite ceramics were transformed into a more hydrophilic direction and indicated a good wetting property. In consideration of mechanical and wetting properties, the ZG3 would be a favorable alternative to the yttria-zirconia ceramic (Y-TZP) in dental implant applications. The results are expected to serve as a technical guidance for the fabrication and evaluation of dental implants.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fan, G.-R., Su, H.-J., Zhang, J., Guo, M., Yang, H., Liu, H.-F., Wang, E.-Y., Liu, L., and Fu, H.-Z.: Microstructure and cytotoxicity of Al2O3-ZrO2 eutectic bioceramics with high mechanical properties prepared by laser floating zone melting. Ceram. Int. 44, 1797817985 (2018).CrossRefGoogle Scholar
Bao, L., Liu, J.-X., Shi, F., Jiang, Y.-Y., and Liu, G.-S.: Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications. Appl. Surf. Sci. 290, 4852 (2014).CrossRefGoogle Scholar
Carvalho, A., Grenho, L., Fernandes, M.-H., Daskalova, A., Trifonov, A., Buchvarov, I., and Monteiro, F.-J.: Femtosecond laser microstructuring of alumina toughened zirconia for surface functionalization of dental implants. Ceram. Int. 46, 13831389 (2020).CrossRefGoogle Scholar
Sailer, I., Makarov, N.-A., Thoma, D.-S., Zwahlen, M., and Pjetursson, B.-E.: All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent. Mater. 31, 603623 (2015).CrossRefGoogle Scholar
Coadou, C.-L., Karst, N., Emieux, F., Sicardy, O., Montani, A., Bernard-Granger, G., Chevalier, J., Gremillard, L., and Simonato, J.-P.: Assessment of ultrathin yttria-stabilized zirconia foils for biomedical applications. J. Mater. Sci. 50, 111 (2017).Google Scholar
El-Ghany, O.-S.-A. and Sherief, A.-H.: Zirconia based ceramics, some clinical and biological aspects: Review. Fut. Dent. J. 2, 5564 (2016).CrossRefGoogle Scholar
Chaar, M.-S., Passia, N., and Kern, M.: Ten-year clinical outcome of three-unit posterior FDPs made from a glass-infiltrated zirconia reinforced alumina ceramic (in-ceram zirconia). J. Dent. 43, 512517 (2015).CrossRefGoogle Scholar
Roy, M.-E., Whiteside, L.-A., Katerberg, B.-J., and Steiger, J.-A.: Phase transformation, roughness, and microhardness of artificially aged yttria- and magnesia-stabilized zirconia femoral heads. J. Biomed. Mater. Res. A 83A, 10961102 (2007).CrossRefGoogle Scholar
Garvie, R.-C., Urbani, C., Kennedy, D.-R., and McNeuer, J.-C.: Biocompatibility of magnesia-partially stabilized zirconia (Mg-PSZ) ceramics. J. Mater. Sci. 19, 32243228 (1984).CrossRefGoogle Scholar
Thostenson, E.-T., Ren, Z.-F., and Chou, T.-W.: Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 61, 18991912 (2001).CrossRefGoogle Scholar
Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 5658 (1991).CrossRefGoogle Scholar
Castranova, V., Schulte, P.-A., and Zumwalde, R.-D.: Occupational nanosafety considerations for carbon nanotubes and carbon nanofibers. Acc. Chem. Res. 46, 642649 (2012).CrossRefGoogle ScholarPubMed
Aoki, N., Akasaka, T., Watari, F., and Yokoyama, A.: Carbon nanotubes as scaffolds for cell culture and effect on cellular functions. Dent. Mater. J. 26, 178185 (2007).CrossRefGoogle ScholarPubMed
Ogihara, N., Usui, Y., Aoki, K., Shimizu, M., Narita, N., Hara, K., Nakamura, K., Ishigaki, N., Takanashi, S., Okamoto, M., Kato, H., Haniu, H., Ogiwara, N., Nakayama, N., Taruta, S., and Saito, N.: Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes. Nanomedicine 7, 981993 (2012).CrossRefGoogle ScholarPubMed
Khan, A.-A., Al Kheraif, A.-A., Syed, J., Divakar, D.-D., and Matinlinna, J.-P.: Enhanced resin zirconia adhesion with carbon nanotubes-infused silanes: A pilot study. J. Adhes. 94, 167180 (2016).CrossRefGoogle Scholar
Lee, C., Wei, X.-D., Kysar, J.-W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385388 (2008).CrossRefGoogle ScholarPubMed
He, H.-Y., Klinowski, J., Forster, M., and Lerf, A.: A new structural model for graphite oxide. Chem. Phys. Lett. 287, 5356 (1998).CrossRefGoogle Scholar
Liu, J.-W., Zhang, Q., Chen, X.-W., and Wang, J.-H.: Surface assembly of graphene oxide nanosheets on SiO2 particles for the selective isolation of hemoglobin. Chemistry 17, 48644870 (2011).CrossRefGoogle ScholarPubMed
Kou, L. and Gao, C.: Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings. Nanoscale 3, 519528 (2011).CrossRefGoogle ScholarPubMed
Shin, J.-H. and Hong, S.-H.: Fabrication and properties of reduced graphene oxide reinforced yttria-stabilized zirconia composite ceramics. J. Eur. Ceram. Soc. 34, 12971302 (2014).CrossRefGoogle Scholar
Ramesh, S., Khan, M.-M., Alexander Chee, H.-C., Wong, Y.-H., Ganesan, P., Kutty, M.-G., Sutharsini, U., Kelvin Chew, W.-J., and Niakan, A.: Sintering behavior and properties of graphene oxide-doped Y-TZP ceramics. Ceram. Int. 42, 1762017625 (2016).CrossRefGoogle Scholar
Zeng, Z.-Y.-B., Liu, Y.-Z., Chen, W.-P., Li, X.-Q., Zheng, Q.-F., Li, K.-L., and Guo, R.-R.: Fabrication and properties of in situ reduced graphene oxide-toughened zirconia composite ceramics. J. Am. Ceram. Soc. 101, 3498-3507 (2018).Google Scholar
Huang, X., Qi, X.-Y., Boey, F., and Zhang, H.: Graphene-based composites. Chem. Soc. Rev. 41, 666686 (2012).CrossRefGoogle ScholarPubMed
Pereira, G.-K.-R., Venturini, A.-B., Silvestri, T., Dapieve, K.-S., Montagner, A.-F., Soares, F.-Z.-M., and Valandro, L.-F.: Low-temperature degradation of Y-TZP ceramics: A systematic review and meta-analysis. J. Mech. Behav. Biomed. 55, 151163 (2016).CrossRefGoogle Scholar
Ferrari, A.-C., Meyer, J.-C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.-S., Roth, S., and Geim, A.-K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401.1187401.4 (2006).CrossRefGoogle ScholarPubMed
Sha, J.-W., Zhao, N.-Q., Liu, E., Shi, C.-S., He, C.-N., and Li, J.-J.: In situ synthesis of ultrathin 2-D TiO2 with high energy facets on graphene oxide for enhancing photocatalytic activity. Carbon 68, 352359 (2014).CrossRefGoogle Scholar
Zhang, L., Liu, W.-W., Yue, C.-G., Zhang, T.-H., Li, P., Xing, Z.-W., and Chen, Y.: A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon 61, 105115 (2013).CrossRefGoogle Scholar
Zhou, Q., Huang, J.-X., Wang, J.-Q., Yang, Z.-G., Liu, S., Wang, Z.-F., and Yang, S.-R.: Preparation of a reduced graphene oxide/zirconia nanocomposite and its application as a novel lubricant oil additive. RSC Adv. 5, 9180291812 (2015).CrossRefGoogle Scholar
Li, D., Yao, J., Liu, B., Sun, H., Agtmaal, S., and Feng, C.-H.: Preparation and characterization of surface grafting polymer of ZrO2 membrane and ZrO2 powder. Appl. Surf. Sci. 471, 394402 (2019).CrossRefGoogle Scholar
Zhang, X., Wu, Y.-Y., He, S.-Y., and Yang, D.-Z.: Structural characterization of sol-gel composites using TEOS/MEMO as precursors. Surf. Coat. Technol. 201, 60516058 (2007).CrossRefGoogle Scholar
Liu, C.-Q., Li, K.-Z., Li, H.-J., Zhang, S.-Y., Zhang, Y.-L., and Wang, B.: Synthesis, characterization and ceramization of a carbon-rich zirconium-containing precursor for ZrC ceramic. Ceram. Int. 40, 72857292 (2014).CrossRefGoogle Scholar
Fabris, S., Paxton, A.-T., and Finnis, M.-W.: A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater. 50, 51715178 (2002).CrossRefGoogle Scholar
Liu, J., Yan, H.-X., Reece, M.-J., and Jiang, K.: Toughening of zirconia/alumina composites by the addition of graphene platelets. J. Eur. Ceram. Soc. 32, 41854193 (2012).CrossRefGoogle Scholar
Kurumada, M., Hara, H., and Iguchi, E.: Oxygen vacancies contributing to intragranular electrical conduction of yttria-stabilized zirconia (YSZ) ceramics. Acta Mater. 53, 48394846 (2005).CrossRefGoogle Scholar
Yilbas, B.-S.: Laser treatment of zirconia surface for improved surface hydrophobicity. J. Alloys Compd. 625, 208215 (2015).CrossRefGoogle Scholar
Rani, J.-R., Lim, J., Oh, J., Kim, J.-W., Shin, H.-S., Kim, J.-H., Lee, S., and Jun, S.-C.: Epoxy to carbonyl group conversion in graphene oxide thin films: Effect on structural and luminescent characteristics. J. Phys. Chem. C 116, 1901019017 (2012).CrossRefGoogle Scholar
Burmeister, C. and Kwade, A.: Process engineering with planetary ball mills. Chem. Soc. Rev. 42, 7660 (2013).CrossRefGoogle ScholarPubMed
Rice, R.-W., Wu, C.-C., and Boichelt, F.: Hardness–grain-size relations in ceramics. J. Am. Ceram. Soc. 77, 25392553 (1994).CrossRefGoogle Scholar
Zhang, S.-C., Fahrenholtz, W.-G., Hilmas, G.-E., and Yadlowsky, E.-J.: Pressureless sintering of carbon nanotube Al2O3 composites. J. Eur. Ceram. Soc. 30, 13731380 (2010).CrossRefGoogle Scholar