Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-22T06:12:16.890Z Has data issue: false hasContentIssue false

Synchrotron x-ray scattering of ZnO nanorods: Periodic ordering and lattice size

Published online by Cambridge University Press:  01 April 2005

Zuoming Zhu
Affiliation:
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
Tamar Andelman
Affiliation:
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
Ming Yin
Affiliation:
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
Tsung-Liang Chen
Affiliation:
Department of Electrical Engineering, Columbia University, New York, New York 10027
Steven N. Ehrlich
Affiliation:
National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973
Stephen P. O'Brien
Affiliation:
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
Richard M. Osgood Jr.*
Affiliation:
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
*
a) Address all correspondence to this author. e-mail: osgood@columbia.edu
Get access

Abstract

We demonstrate that synchrotron x-ray powder diffraction (XRD) is a powerful technique for studying the structure and self-organization of zinc-oxide nanostructures. Zinc-oxide nanorods were prepared by a solution-growth method that resulted in uniform nanorods with 2-nm diameter and lengths in the range 10–50 nm. These nanorods were structurally characterized by a combination of small-angle and wide-angle synchrotron XRD and transmission electron microscopy (TEM). Small-angle XRD and TEM were used to investigate nanorod self-assembly and the influence of surfactant/precursor ratio on self-assembly. Wide-angle XRD was used to study the evolution of nanorod growth as a function of synthesis time and surfactant/precursor ratio.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hicks, L.D. and Dresselhaus, M.S.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631 (1993).CrossRefGoogle ScholarPubMed
2. Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).CrossRefGoogle Scholar
3. Lieber, C.M.: One-dimensional nanostructures: Chemistry, physics & applications. Solid State Commun. 107, 607 (1998).CrossRefGoogle Scholar
4. Hu, J.T., Odom, T.W. and Lieber, C.M.: Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Accounts Chem. Res. 32, 435 (1999).CrossRefGoogle Scholar
5. Holmes, J.D., Johnston, K.P., Doty, R.C. and Korgel, B.A.: Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471 (2000).CrossRefGoogle ScholarPubMed
6. Huang, M.H., Mao, S., Feick, H., Yan, H.Q., Wu, Y.Y., Kind, H., Weber, E., Russo, R. and Yang, P.D.: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).CrossRefGoogle ScholarPubMed
7. Jana, N.R., Gearheart, L. and Murphy, C.J.: Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105, 4065 (2001).CrossRefGoogle Scholar
8. Manna, L., Scher, E.C. and Alivisatos, A.P.: Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700 (2000).CrossRefGoogle Scholar
9. Peng, X.G., Manna, L., Yang, W.D., Wickham, J., Scher, E., Kadavanich, A. and Alivisatos, A.P.: Shape control of CdSe nanocrystals. Nature 404, 59 (2000).CrossRefGoogle ScholarPubMed
10. Liu, B. and Zeng, H.C.: Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 20, 4196 (2004).CrossRefGoogle ScholarPubMed
11. Cozzoli, P.D., Kornowski, A. and Weller, H.: Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J. Am. Chem. Soc. 125, 14539 (2003).CrossRefGoogle ScholarPubMed
12. Korgel, B.A. and Fitzmaurice, D.: Self-assembly of silver nanocrystals into two-dimensional nanowire arrays. Adv. Mater. 10, 661 (1998).3.0.CO;2-L>CrossRefGoogle Scholar
13. Nikoobakht, B., Wang, Z.L. and El-Sayed, M.A.: Self-assembly of gold nanorods. J. Phys. Chem. B 104, 8635 (2000).CrossRefGoogle Scholar
14. Liu, Z.P., Hu, Z.K., Liang, J.B., Li, S., Yang, Y., Peng, S. and Qian, Y.T.: Size-controlled synthesis and growth mechanism of monodisperse tellurium nanorods by a surfactant-assisted method. Langmuir 20, 214 (2004).CrossRefGoogle ScholarPubMed
15. Li, M., Schnablegger, H. and Mann, S.: Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402, 393 (1999).CrossRefGoogle Scholar
16. Maeda, H. and Maeda, Y.: Atomic force microscopy studies for investigating the smectic structures of colloidal crystals of β– FeOOH. Langmuir 12, 1446 (1996).CrossRefGoogle Scholar
17. Manna, A., Imae, T., Iida, M. and Hisamatsu, N.: Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex. Langmuir 17, 6000 (2001).CrossRefGoogle Scholar
18. Firestone, M.A., Williams, D.E., Seifert, S. and Csencsits, R.: Nanoparticle arrays formed by spatial compartmentalization in a complex fluid. Nano Lett. 1, 129 (2001).CrossRefGoogle Scholar
19. Bronstein, L.M., Linton, C., Karlinsey, R., Stein, B., Svergun, D.I., Zwanziger, J.W. and Spontak, R.J.: Synthesis of metal-loaded poly(aminohexyl)(aminopropyl)silsesquioxane colloids and their self-organization into dendrites. Nano Lett. 2, 873 (2002).CrossRefGoogle Scholar
20. Garnweitner, G., Smarsly, B., Assink, R., Ruland, W., Bond, E. and Brinker, C.J.: Self-assembly of an environmentally responsive polymer/silica nanocomposite. J. Am. Chem. Soc. 125, 5626 (2003).CrossRefGoogle ScholarPubMed
21. Huang, M.H., Wu, Y.Y., Feick, H., Tran, N., Weber, E. and Yang, P.D.: Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113 (2001).3.0.CO;2-H>CrossRefGoogle Scholar
22. Yang, P.D., Yan, H.Q., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R.R. and Choi, H.J.: Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 12, 323 (2002).3.0.CO;2-G>CrossRefGoogle Scholar
23. Cheng, B. and Samulski, E.T.: Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios. Chem. Commun. 8, 986 (2004).CrossRefGoogle Scholar
24. Yin, M., Gu, Y., Kuskovsky, I.L., Andelman, T., Zhu, Y., Neumark, G.F. and O’Brien, S.: Zinc oxide quantum rods. J. Am. Chem. Soc. 126, 6206 (2004).CrossRefGoogle ScholarPubMed
25. Kim, F., Kwan, S., Akana, J. and Yang, P.D.: Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc. 123, 4360 (2001).CrossRefGoogle ScholarPubMed
26. Jana, N.R., Gearheart, L.A., Obare, S.O., Johnson, C.J., Edler, K.J., Mann, S. and Murphy, C.J.: Liquid crystalline assemblies of ordered gold nanorods. J. Mater. Chem. 12, 2909 (2002).CrossRefGoogle Scholar
27. Li, L.S., Hu, J.T., Yang, W.D. and Alivisatos, A.P.: Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 1, 349 (2001).CrossRefGoogle Scholar
28. Perebeinos, V., Chan, S.W. and Zhang, F.: ‘Madelung model’ prediction for dependence of lattice parameter on nanocrystal size. Solid State Commun. 123, 295 (2002).CrossRefGoogle Scholar
29. Noack, V. and Eychmuller, A.: Annealing of nanometer-sized zinc oxide particles. Chem. Mater. 14, 1411 (2002).CrossRefGoogle Scholar
30. Peng, Z.A. and Peng, X.G.: Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 124, 3343 (2002).CrossRefGoogle ScholarPubMed
31. Zhang, F., Chan, S.W., Spanier, J.E., Apak, E., Jin, Q., Robinson, R.D. and Herman, I.P.: Cerium oxide nanoparticles: Size-selective formation and structure analysis. Appl. Phys. Lett. 80, 127 (2002).CrossRefGoogle Scholar
32. Yin, M., Willis, A., Redl, F., Turro, N. and O’Brien, S.: Influence of capping groups on the synthesis of γ–Fe2O3 nanocrystals. J. Mater. Res. 19, 1208 (2004).CrossRefGoogle Scholar
33. Hyeon, T., Lee, S.S., Park, J., Chung, Y. and Na, H. Bin: Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798 (2001).CrossRefGoogle ScholarPubMed
34. Pesika, N.S., Hu, Z.S., Stebe, K.J. and Searson, P.C.: Quenching of growth of ZnO nanoparticles by adsorption of octanethiol. J. Phys. Chem. B 106, 6985 (2002).CrossRefGoogle Scholar