Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T20:28:53.763Z Has data issue: false hasContentIssue false

Symmetrically abrupt GaN/AlGaN superlattices by alternative interface–interruption scheme

Published online by Cambridge University Press:  23 January 2013

Xiaohong Chen
Affiliation:
Department of Physics, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, China
Na Lin
Affiliation:
Department of Physics, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, China
Duanjun Cai*
Affiliation:
Department of Physics, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, China
Yong Zhang
Affiliation:
Technology Department, Xiamen Changelight Co., Ltd, Xiamen 361005, China
Hangyang Chen
Affiliation:
Department of Physics, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, China
Junyong Kang*
Affiliation:
Department of Physics, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, China
*
a)Address all correspondence to these authors. e-mail: dcai@xmu.edu.cn
Get access

Abstract

We report an alternative interruption scheme to effectively improve the abruptness of GaN/AlGaN superlattices by minimizing the asymmetric feature of different types of heterointerfaces. It is found by x-ray diffraction that the interface abruptness is degraded and the GaN thickness is reduced with the interruption time increasing. Detailed investigation with scanning transmission electron microscopy demonstrates that the Al diffusion and the interface etching effect at the GaN/AlGaN interface are the critical reasons leading to the interfacial asymmetry. An alternative interface–interruption scheme is then proposed to enhance the abruptness of the superlattice interfaces, and consequently, the emission efficiency can also be significantly enhanced.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ponce, F.A. and Bour, D.P.: Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351 (1997).CrossRefGoogle Scholar
Orton, J.W. and Foxon, C.T.: Group III nitride semiconductors for short wavelength light-emitting devices. Rep. Prog. Phys. 61, 1 (1998).CrossRefGoogle Scholar
Akasaki, I. and Amano, H.: Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters. Jpn. J. Appl. Phys., Part 1 36, 5393 (1997).CrossRefGoogle Scholar
Jeon, S.R., Lee, S.J., Jung, S.H., Lee, S.H., Baek, J.H., Jeong, H., Cha, O.H., Suh, E.K., and Jeong, M.S.: Effect of V-shaped defects on structural and optical properties of AlGaN/InGaN multiple quantum wells. J. Phys. D: Appl. Phys. 41, 132006 (2008).CrossRefGoogle Scholar
Han, S.H., Lee, D.Y., Lee, S.J., Cho, C.Y., Kwon, M.K., Lee, S.P., Noh, D.Y., Kim, D.J., Kim, Y.C., and Park, S.J.: Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett. 94, 231123 (2009).CrossRefGoogle Scholar
Esmaeili, M., Sabooni, M., Haratizadeh, H., Paskov, P.P., Monemar, B., Oholz, P., Kamiyama, S., and Iwaya, M.: Optical properties of GaN/AlGaN QW nanostructures with different well and barrier widths. J. Phys. Condens. Matter 19, 356218 (2007).CrossRefGoogle Scholar
Khan, M.A., Shatalov, M., Maruska, H.P., Wang, H.M., and Kuokstis, E.: III -nitride UV devices. Jpn. J. Appl. Phys., Part 1 44, 7191 (2005).CrossRefGoogle Scholar
Sitar, Z., Paisley, M.J., Yan, B., Ruan, J., Choyke, W.J., and Davis, R.F.: Growth of AlN/GaN layered structures by gas source molecular-beam epitaxy. J. Vac. Sci. Technol., B 8, 316 (1990).CrossRefGoogle Scholar
Hoshino, K., Someya, T., Hirakawa, K., and Arakawa, Y.: Low-pressure MOCVD growth of GaN/AlGaN multiple quantum wells for intersubband transitions. J. Cryst. Growth 237, 1163 (2002).CrossRefGoogle Scholar
Fuhrmann, D., Retzlaff, T., Rossow, U., Bremers, H., Hangleiter, A., Ade, G., and Hinze, P.: Large internal quantum efficiency of In-free UV-emitting GaN/AlGaN quantum-well structures. Appl. Phys. Lett. 88, 191108 (2006).CrossRefGoogle Scholar
Cabalu, J.S., Bhattacharyya, A., Thomidis, C., Friel, I., Moustakas, T.D., Collins, C.J., and Komninou, P.: High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy. J. Appl. Phys. 100, 104506 (2006).CrossRefGoogle Scholar
Asgari, A., Ahmadi, E., and Kalafi, M.: AlxGa1-xN/GaN multi-quantum-well ultraviolet detector based on p-i-n heterostructures. Microelectron. J. 40, 104 (2009).CrossRefGoogle Scholar
Baumann, E., Giorgetta, F.R., Hofstetter, D., Lu, H., Chen, X., Schaff, W.J., Eastman, L.F., Golka, S., Schrenk, W., and Strasser, G.: Intersubband photoconductivity at 1.6 μm using a strain-compensated AlN/GaN superlattice. Appl. Phys. Lett. 87, 191102 (2005).CrossRefGoogle Scholar
Hofstetter, D., Baumann, E., Giorgetta, F.R., Guillot, F., Leconte, S., and Monroy, E.: Optically nonlinear effects in intersubband transitions of GaN/AlN-based superlattice structures. Appl. Phys. Lett. 91, 131115 (2007).CrossRefGoogle Scholar
Vardi, A., Bahir, G., Guillot, F., Bougerol, C., Monroy, E., Schacham, S.E., Tchernycheva, M., and Julien, F.H.: Near infrared quantum cascade detector in GaN/AlGaN/AlN heterostructures. Appl. Phys. Lett. 92, 011112 (2008).CrossRefGoogle Scholar
Nevou, L., Kheirodin, N., Tchernycheva, M., Meignien, L., Crozat, P., Lupu, A., Warde, E., Julien, F.H., Pozzovivo, G., Golka, S., Strasser, G., Guillot, F., and Monroy, E.: Short-wavelength intersubband electroabsorption modulation based on electron tunneling between GaN/AlN coupled quantum wells. Appl. Phys. Lett. 90, 223511 (2007).CrossRefGoogle Scholar
Moon, Y.T., Kim, D.J., Song, K.M., Kim, D.W., Yi, M.S., Noh, D.Y., and Park, S.J.: Effect of growth interruption and the introduction of H2 on the growth of InGaN/GaN multiple quantum wells. J. Vac. Sci. Technol. B 18, 2631 (2000).CrossRefGoogle Scholar
Shirasawa, T., Mochida, N., Inoue, A., Honda, T., Sakaguchi, T., Koyama, F., and Iga, K.: Interface control of GaN/AlGaN quantum well structures in MOVPE growth. J. Cryst. Growth 189, 124 (1998).CrossRefGoogle Scholar
Li, D.B., Aoki, M., Katsuno, T., Miyake, H., Hiramatsu, K., and Shibata, T.: Influence of growth interruption and Si doping on the structural and optical properties of AlxGaN/AlN (x > 0.5) multiple quantum wells. J. Cryst. Growth 298, 500 (2007).CrossRefGoogle Scholar
Bai, J., Wang, T., Parbrook, P.J., Ross, I.M., and Cullis, A.G.: V-shaped pits formed at the GaN/AlN interface. J. Cryst. Growth 289, 63 (2006).CrossRefGoogle Scholar
Schupp, T., Lischka, K., and As, D.J.: MBE growth of atomically smooth non-polar cubic AlN. J. Cryst. Growth 312, 1500 (2010).CrossRefGoogle Scholar
Wie, C.R., Chen, J.C., Kim, H.M., Liu, P.L., Choi, Y.W., and Hwang, D.M.: X-ray interference measurement of ultrathin semiconductor layers. Appl. Phys. Lett. 55, 1774 (1989).CrossRefGoogle Scholar
Prosa, T.J., Clifton, P.H., Zhong, H., Tyagi, A., Shivaraman, R., DenBaars, S.P., Nakamura, S., and Speck, J.S.: Atom probe analysis of interfacial abruptness and clustering within a single InxGa1?xN quantum well device on semipolar (10) GaN substrate. Appl. Phys. Lett. 98, 191903 (2011).CrossRefGoogle Scholar
Hawkridge, M.E., Liliental-Weber, Z., Kim, H.J., Choi, S., Yoo, D., Ryou, J-H., and Dupuis, R.D.: Erratic dislocations within funnel defects in AlN templates for AlGaN epitaxial layer growth. Appl. Phys. Lett. 94, 171912 (2009).CrossRefGoogle Scholar
Vinciguerra, V., Franzo, G., Priolo, F., Iacona, F., and Spinella, C.: Quantum confinement and recombination dynamics in silicon nanocrystals embedded. J. Appl. Phys. 87, 8165 (2000).CrossRefGoogle Scholar