Skip to main content Accessibility help

Surfactant-assisted nanorod synthesis of α-FeOOH and its adsorption characteristics for methylene blue

  • Jinhua Zhang (a1), Xiaomeng Zhu (a1) and Kun Yu (a1)


Sodium dodecyl sulfate (SDS) was chosen as the structure controller and surface modifier for hydrothermal preparation of surfactant-modified goethite (α-FeOOH) nanorods. The as-synthesized samples were characterized by transmission electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, Brunauer, Emmett and Teller technique, and potentiometric titration. Adsorption study using methylene blue (MB) as a model pollutant was conducted onto the surfactant-modified goethite surface. The results showed that the surfactant-modified α-FeOOH nanorods had high adsorption capacity. MB could be efficiently removed from the solution at pH 5, initial MB concentration 200 mg/L, α-FeOOH dosage 0.5 g/L, and temperature 30 °C, with 96% removal ratio. The adsorption capacity was found to be as high as 385 mg/g. The adsorption kinetic data could be described well by the pseudo-second-order model. The isothermic data were highly fitted to Langmuir isotherm. High adsorption capacity and simple reaction conditions give this novel material good prospects in future applications.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Haque, M.F. and Arajs, S.: Electroconvective heat transfer in a suspension of rod-like akageneite particle (β-FeOOH). Int. J. Heat Mass Transfer 42(9), 1617 (1999).
2. Einaga, Y., Taguchi, M., Li, G., Akitsu, T., Gu, Z., Sugai, T., and Sato, O.: Magnetization increase of iron oxide by photoinduced aggregation of spiropyran. Chem. Mater. 15(1), 8 (2003).
3. Srivastava, D.N., Perkas, N., Gedanken, A., and Felner, I.: Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties. J. Phys. Chem. B 106(8), 1878 (2002).
4. Miteva, S. and Stoimenova, M.: Electro-optic characteristics of aqueous β-FeOOH particles. J. Colloid Interface Sci. 273(2), 490 (2004).
5. Toledano, D.S. and Henrich, V.E.: Kinetics of SO2 adsorption on photoexcited α-Fe2O3 . J. Phys. Chem. B 105(18), 3872 (2001).
6. Schwertmann, U. and Cornell, R.M.: Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed. (Wiley-VCH, New York, 1991).
7. Apblett, A.W., Kuriyavar, S.I., and Kiran, B.P.: Preparation of micron-sized spherical porous iron oxide particles. J. Mater. Chem. 13(5), 983 (2003).
8. Grossl, P.R., Eick, M., Sparks, D.L., Goldberg, S., and Ainsworth, C.C.: Arsenate and chromate retention mechanism on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ. Sci. Technol. 31, 321 (1997).
9. Jaiswal, A., Banerjee, S., Mani, R., and Chattopadhyaya, M.C.: Synthesis, characterization and application of goethite mineral as an adsorbent. J. Environ. Chem. Eng. 1(3), 281 (2013).
10. Nassar, N.N.: Kinetics, mechanistic, equilibrium, and thermodynamic studies on the adsorption of acid red dye from wastewater by γ-Fe2O3 nanoadsorbents. Sep. Sci. Technol. 45(8), 1092 (2010).
11. Nassar, N.N.: Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. J. Hazard. Mater. 184(1–3), 538 (2010).
12. Nassar, N.N.: Kinetics, equilibrium and thermodynamic studies on the adsorptive removal of nickel, cadmium and cobalt from wastewater by superparamagnetic iron oxide nanoadsorbents. Can. J. Chem. Eng. 90(5), 1231 (2012).
13. Hristovski, K., Baumgardner, A., and Westerhoff, P.: Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: From nanopowders to aggregated nanoparticle media. J. Hazard. Mater. 147(1), 265 (2007).
14. Zhao, Y., Geng, J., Wang, X., Gu, X., and Gao, S.: Adsorption of tetracycline onto goethite in the presence of metal cations and humic substances. J. Colloid Interface Sci. 361(1), 247 (2011).
15. Granados-Correa, F., Corral-Capulin, N.G., Olguín, M.T., and Acosta-León, C.E.: Comparison of the Cd(II) adsorption processes between boehmite (γ-AlOOH) and goethite (α-FeOOH). Chem. Eng. J. 171(3), 1027 (2011).
16. Mustafa, G., Singh, B., and Kookana, R.S.: Cadmium adsorption and desorption behaviour on goethite at low equilibrium concentrations: Effects of pH and index cations. Chemosphere 57(10), 1325 (2004).
17. Jönsson, J., Sjöberg, S., and Lövgren, L.: Adsorption of Cu(II) to schwertmannite and goethite in presence of dissolved organic matter. Water Res. 40(5), 969 (2006).
18. Trivedi, P., Axe, L., and Dyer, J.: Adsorption of metal ions onto goethite: Single-adsorbate and competitive systems. Colloids Surf., A 191(1–2), 107 (2001).
19. Gao, Y. and Mucci, A.: Individual and competitive adsorption of phosphate and arsenate on goethite in artificial seawater. Chem. Geol. 199(1–2), 91 (2003).
20. Xu, N., Christodoulatos, C., and Braida, W.: Modeling the competitive effect of phosphate, sulfate, silicate, and tungstate anions on the adsorption of molybdate onto goethite. Chemosphere 64(8), 1325 (2006).
21. Yang, L., Hu, C., Nie, Y., and Qu, J.: Surface acidity and reactivity of β-FeOOH/Al2O3 for pharmaceuticals degradation with ozone: In situ ATR-FTIR studies. Appl. Catal., B 97(3–4), 340 (2010).
22. Kosmulski, M., Durand-Vidal, S., Maczka, E., and Rosenholm, J.B.: Morphology of synthetic goethite particles. J. Colloid Interface Sci. 271(2), 261 (2004).
23. Prélot, B., Villiéras, F., Pelletier, M., Gérard, G., Gaboriaud, F., Ehrhardt, J., Perrone, J., Fedoroff, M., Jeanjean, J., Lefèvre, G., Mazerolles, L., Pastol, J., Rouchaud, J., and Lindecker, C.: Morphology and surface heterogeneities in synthetic goethites. J Colloid Interface Sci. 261(2), 244 (2003).
24. Zhao, X.S. and Lu, G.Q.: Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study. J. Phys. Chem. B 102(9), 1556 (1998).
25. Tangpasuthadol, V., Pongchaisirikul, N., and Hoven, V.P.: Surface modification of chitosan films. Effects of hydrophobicity on protein adsorption. Carbohydr. Res. 338(9), 937 (2003).
26. Choi, H., Jung, W., Cho, J., Ryu, B., Yang, J., and Baek, K.: Adsorption of Cr (VI) onto cationic surfactant-modified activated carbon. J. Hazard. Mater. 166(2), 642 (2009).
27. Silva, J., Mello, J.W.V., Gasparon, M., Abrahão, W.A.P., Ciminelli, V.S.T., and Jong, T.: The role of Al-goethites on arsenate mobility. Water Res. 44(19), 5684 (2010).
28. Mohapatra, M., Anand, S., Das, R.P., Upadhyay, C., and Verma, H.C.: Preparation and characterization of Cu(II), Ni(II) or Co(II) ion-doped goethite samples and their conversion to magnetite in NH3–FeSO4–H2O medium. Hydrometallurgy 66(1–3), 125 (2002).
29. Mohapatra, M., Rout, K., and Anand, S.: Synthesis of Mg(II) doped goethite and its cation sorption behaviour. J. Hazard. Mater. 171(1–3), 417 (2009).
30. Alvarez, M., Rueda, E.H., and Sileo, E.E.: Structural characterization and chemical reactivity of synthetic Mn-goethites and hematites. Chem. Geol. 231(4), 288 (2006).
31. Tufo, A.E., Sileo, E.E., and Morando, P.J.: Release of metals from synthetic Cr-goethites under acidic and reductive conditions: Effect of aging and composition. Appl. Clay Sci. 58, 88 (2012).
32. Wei, C., Qiao, P., and Nan, Z.: Size-controlled synthesis of rod-like α-FeOOH nanostructure. Mater. Sci. Eng., C 32(6), 1524 (2012).
33. Rădiţoiu, V., Diamandescu, L., Cosmin Corobea, M., Rădiţoiu, A., Popescu-Pogrion, N., and Andi Nicolae, C.: A facile hydrothermal route for the synthesis of α-FeOOH with controlled morphology. J. Cryst. Growth 348(1), 40 (2012).
34. Geng, F., Zhao, Z., Cong, H., Geng, J., and Cheng, H.: An environment-friendly microemulsion approach to α-FeOOH nanorods at room temperature. Mater. Res. Bull. 41(12), 2238 (2006).
35. Xie, J., Meng, W., Wu, D., Zhang, Z., and Kong, H.: Removal of organic pollutants by surfactant modified zeolite: Comparison between ionizable phenolic compounds and non-ionizable organic compounds. J. Hazard. Mater. 231232, 57 (2012).
36. Yuan, Z. and Su, B.: Surfactant-assisted nanoparticle assembly of mesoporous β-FeOOH (akaganeite). Chem. Phys. Lett. 381(5–6), 710 (2003).
37. Yuan, Z., Ren, T., and Su, B.: Surfactant mediated nanoparticle assembly of catalytic mesoporous crystalline iron oxide materials. Catal. Today 9395, 743 (2004).
38. Ristić, M., Musić, S., and Godec, M.: Properties of γ-FeOOH, α-FeOOH and α-Fe2O3 particles precipitated by hydrolysis of Fe3+ ions in perchlorate containing aqueous solutions. J. Alloys Compd. 417(1–2), 292 (2006).
39. Sun, Y., Lin, J., and Zhan, Y.: Adsorption of Congo red from aqueous solution on surfactant-modified zeolites with different coverage types: Behavior and mechanism. Sep. Sci. Technol. 48(3), 2036 (2013).
40. Chen, H., Zhao, J., Wu, J., and Dai, G.: Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae. J. Hazard. Mater. 192(1), 246 (2011).
41. Ding, C. and Shang, C.: Mechanisms controlling adsorption of natural organic matter on surfactant-modified iron oxide-coated sand. Water Res. 44(12), 3651 (2010).
42. Nadeem, M., Shabbir, M., Abdullah, M.A., Shah, S.S., and McKay, G.: Sorption of cadmium from aqueous solution by surfactant-modified carbon adsorbents. Chem. Eng. J. 148(2), 365 (2009).
43. Nadeem, M., Mahmood, A., Shahid, S.A., Shah, S.S., Khalid, A.M., and McKay, G.: Sorption of lead from aqueous solution by chemically modified carbon adsorbents. J. Hazard. Mater. 138(3), 604 (2006).
44. Armagan, B., Turan, M., and Karadag, D.: Adsorption of different reactive dyes onto surfactant-modified zeolite: Kinetic and equilibrium modeling. Presented at International Conference on Environment: Survival and Sustainability; Environmental Concerns in the 21st Century, Berlin, 2011.
45. Fan, L., Luo, C., Li, X., Lu, F., Qiu, H., and Sun, M.: Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J. Hazard. Mater. 215216, 272 (2012).
46. Theydan, S.K. and Ahmed, M.J.: Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. J. Anal. Appl. Pyrolysis 97, 116 (2012).
47. Zhang, X., Zhang, P., Wu, Z., Zhang, L., Zeng, G., and Zhou, C.: Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles. Colloids Surf., A 435, 85 (2013).
48. An, Z., Zhang, J., and Pan, S.: Synthesis and controlled assembly of α-FeOOH and α-Fe2O3 nanobelt arrays on hollow glass spheres. Mater. Res. Bull. 47(12), 3976 (2012).
49. Krehula, S. and Musić, S.: Influence of aging in an alkaline medium on the microstructural properties of α-FeOOH. J. Cryst. Growth 310(2), 513 (2008).
50. Ou, P., Xu, G., Ren, Z., Hou, X., and Han, G.: Hydrothermal synthesis and characterization of uniform α-FeOOH nanowires in high yield. Mater. Lett. 62(6–7), 914 (2008).
51. Geng, F., Zhao, Z., Geng, J., Cong, H., and Cheng, H.: A simple and low-temperature hydrothermal route for the synthesis of tubular α-FeOOH. Mater. Lett. 61(26), 4794 (2007).
52. Krehula, S., Popović, S., and Musić, S.: Synthesis of acicular α-FeOOH particles at a very high pH. Mater. Lett. 54(2), 108 (2002).
53. Krehula, S. and Musić, S.: Influence of copper ions on the precipitation of goethite and hematite in highly alkaline media. J. Mol. Struct. 834836, 154 (2007).
54. Mayant, C., Grambow, B., Abdelouas, A., Ribet, S., and Leclercq, S.: Surface site density, silicic acid retention and transport properties of compacted magnetite powder. Phys. Chem. Earth 33(14–16), 991 (2008).
55. Shao, D., Xu, D., Wang, S., Fang, Q., Wu, W., Dong, Y., and Wang, X.: Modeling of radionickel sorption on MX-80 bentonite as a function of pH and ionic strength. Sci. China, Ser. B Chem. 52(3), 362 (2009).
56. Sahai, N. and Sverjensky, D.A.: Evaluation of internally consistent parameters for the triple-layer model by the systematic analysis of oxide surface titration data. Geochim. Cosmochim. Acta 61(14), 2801 (1997).
57. Yates, D.E., Grieser, F., Cooper, R., and Healy, T.W.: Tritium exchange studies on metal oxide colloidal dispersions. Aust. J. Chem. 30(8), 1655 (1977).
58. Rustad, J.R., Felmy, A.R., and Hay, B.P.: Molecular statics calculations of proton binding to goethite surfaces: A new approach to estimation of stability constants for multisite surface complexation models. Geochim. Cosmochim. Acta 60(9), 1563 (1996).
59. Vučurović, V.M., Razmovski, R.N., and Tekić, M.N.: Methylene blue (cationic dye) adsorption onto sugar beet pulp: Equilibrium isotherm and kinetic studies. J. Taiwan Inst. Chem. Eng. 43(1), 108 (2012).
60. Ma, J., Jia, Y., Jing, Y., Yao, Y., and Sun, J.: Kinetics and thermodynamics of methylene blue adsorption by cobalt-hectorite composite. Dyes Pigm. 93(1–3), 1441 (2012).
61. Khraisheh, M., Al-Ghouti, M.A., Allen, S.J., and Ahmad, M.: The effect of pH, temperature, and molecular size on the removal of dyes from textile effluent using manganese oxides-modified diatomite. Water Environ. Res. 76(7), 2655 (2004).
62. Al-Ghouti, M.A., Li, J., Salamh, Y., Al-Laqtah, N., Walker, G., and Ahmad, M.N.M.: Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. J. Hazard. Mater. 176(1–3), 510 (2010).


Related content

Powered by UNSILO

Surfactant-assisted nanorod synthesis of α-FeOOH and its adsorption characteristics for methylene blue

  • Jinhua Zhang (a1), Xiaomeng Zhu (a1) and Kun Yu (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.