Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-20T03:26:20.996Z Has data issue: false hasContentIssue false

Surface reactions of low-energy carbon ions with boron nitride thin films

Published online by Cambridge University Press:  31 January 2011

I. Montero*
Affiliation:
Instituto de Ciencia de Materiales, CSIC and Departamento de Física Aplicada, C-XII, Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid, Spain
L. Galán
Affiliation:
Instituto de Ciencia de Materiales, CSIC and Departamento de Física Aplicada, C-XII, Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid, Spain
*
a)Address correspondence to this author at Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Cientificas, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid, Spain.
Get access

Abstract

The chemical reactions between hyperthermal species from a methane plasma and the boron nitride surface have been studied. In this work we report an x-ray photoemission study of the boron nitride with varying degrees of carburization. The carbon ions react, forming C–B and C–N bonds; for surface carbon concentration, smaller than ,∼0.30, C–B bonds are formed, while for higher surface carbon concentrations C–N bonds are also observed. In addition, the binding energy difference between the N1s and B1s core levels increases with increasing carbon content of the film. These chemical shifts are interpreted in terms of the decrease of the ionicity of the material as a consequence of the increase in the number of C–B and C–N bonds. For surface carbon concentration higher than 0.30, amorphous carbon is also formed that grows and finally forms a surface layer. The valence band spectra of the BNC compounds show that the density of states filling the gap at about 15 eV between the two characteristic peaks of the valence band of BN, marking the nitrogen 2s orbitals and the boron and nitrogen 2p electrons and the orbital hybridization between the 2s of boron and 2p states, increases with increasing carbon fluence as a consequence of the hybridization with carbon orbitals.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nakamura, K., Mater. Sci. Forum 54–55, 111 (1990).Google Scholar
2.Adams, A. C. and Capio, C. D., J. Electrochem. Soc. 127, 399 (1980).CrossRefGoogle Scholar
3.Murarka, S. P., Chang, C. C., Wang, D. N. K., and Smith, T. E., J. Electrochem. Soc. 126, 1952 (1979).Google Scholar
4.Liu, A. Y. and Cohen, M. L., Science 245, 842 (1989).CrossRefGoogle Scholar
5.Knittle, E., Kaner, R. B., Jeanloz, R., and Cohen, M. L., Phys. Rev. B 51, 12 149 (1995).CrossRefGoogle Scholar
6.Belforti, D., Blum, S., and Bovarnick, B., Nature (London) 4779, 901 (1961).CrossRefGoogle Scholar
7.Moore, A. W., Strong, S. L., Doll, G. L., Dresselhaus, M. S., Spain, I. L., Bowers, C. W., Issi, J. P., and Piraux, L., J. Appl. Phys. 65, 5109 (1989).CrossRefGoogle Scholar
8.Kouvetakis, J., Kaner, R. B., Sattler, M. L., and Bartlett, N., J. Chem. Soc., Chem. Commun., 1758 (1986).CrossRefGoogle Scholar
9.Saugnac, F., Teyssandier, F., and Marchand, A., J. Am. Ceram. Soc. 75, 161 (1992).CrossRefGoogle Scholar
10.Kaner, R. B., Kouvetakis, J., Warble, C. E., Sattler, M. L., and Bartllet, N., Mater. Res. Bull. 22, 399 (1987).CrossRefGoogle Scholar
11.Trehan, R., Lifshitz, Y., and Rabalais, J. W., J. Vac. Sci. Technol. A 8 (6), 4026 (1990).CrossRefGoogle Scholar
12.Mezentzeff, P., Lifshitz, Y., and Rabalais, J. W., Nucl. Instrum. Methods, Phys. Res. B 44, 289 (1990).CrossRefGoogle Scholar
13.Lifshitz, Y., Kasi, S. R., and Rabalais, J. W., Phys. Rev. B 41, 10 468 (1990).CrossRefGoogle Scholar
14.Lifshitz, Y., Kasi, S. R., and Rabalais, J. W., Phys. Rev. Lett. 62, 1290 (1989).CrossRefGoogle Scholar
15.Ion beam assisted film growth. Beam modification of materials 3, edited by Itoh, I. (Elsevier, Amsterdam, 1989).Google Scholar
16.Prieto, P., Galán, L., and Sanz, J. M., Phys. Rev. B 47, 1613 (1993).CrossRefGoogle Scholar
17.Plank, H., Wang, W., Eckstein, W., Schwörer, R., Steffen, H. J., and Roth, J., J. Appl. Phys. 78 (9), 5366 (1995).CrossRefGoogle Scholar
18.Vandentop, G. J., Kawasaki, M., Nix, R. M., Brown, I. G., Salmeron, M., and Somorjai, G. A., Phys. Rev. B 41, 3200 (1990).CrossRefGoogle Scholar
19.Montero, I., Galán, L., Osòrio, S. P., and Martinez-Duart, J. M., Surf. Interface Anal. 21, 809 (1994).CrossRefGoogle Scholar
20. XPS sensitivity factors Data Sheet supplied by Leybold–Heraeus with a LH 10 ESCA spectrometer, 1985, corrected for transmission function of VGS ESCALAB instrument.Google Scholar
21.Wagner, C. D., Riegs, W. M., Davis, L. E., and Moulder, J. F., Handbook of X-ray Photoelectron Spectroscopy, edited by Mulienberg, G. E. (Perkin-Elmer Corp., Eden Prairie, MN, 1979).Google Scholar
22.Kaner, R. B., Kouvetakis, J., Warble, C. E., Sattler, M. L., and Bartlett, N., Mater. Res. Bull. 22, 399 (1987).CrossRefGoogle Scholar
23.Yeh, J. J. and Lindau, I., Atomic Data and Nuclear Data Tables 32, 1 (1985).CrossRefGoogle Scholar
24.Xu, Y. N. and Ching, W. Y., Phys. Rev. B 44, 7787 (1991).CrossRefGoogle Scholar
25.Barr, T. L., Modern ESCA, The Principles and Practice of X-Ray Photoelectron Spectroscopy (CRC Press, Boca Raton, FL, 1994), p. 159.Google Scholar