Skip to main content Accessibility help

The surface morphological evolution of ultrathin SiC buffer layer grown on Si (100) substrate by atmospheric pressure chemical vapor deposition

  • Biao Shi (a1), Ming-Xing Zhu (a1), Xue-Chao Liu (a2), Jian-Hua Yang (a2) and Er-Wei Shi (a2)...


Ultrathin SiC buffer layers have been grown on Si (100) substrates by atmospheric pressure chemical vapor deposition. The evolution of buffer layer morphological properties as a function of carbonization parameters is investigated by atomic force microscopy. Based on the quantitative analysis of the dependences of void density, void depth, void width, and surface roughness on carbonization parameters, a buffer layer growth model is proposed, and the effects of carbonization parameters on buffer layer morphology are clarified. The void density is related to the carbonization temperature, temperature ramp-up rate, and C3H8 concentration by affecting the initial SiC nuclei density. The void size is evolved with processing time and mainly dependent on the carbonization temperature but slightly affected by C3H8 and H2. The buffer layer morphology is deteriorated with increasing H2 flow rate when the C3H8 concentration is fixed.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Ferro, G., Monteil, Y., Vincent, H., Thevenot, V., Tran, M.D., Cauwet, F., and Bouix, J.: Atomic force microscopy growth modeling of SiC buffer layers on Si (100) and quality optimization. J. Appl. Phys. 80(8), 4691 (1996).
2.Severino, A., D’Arrigo, G., Bongiorno, C., Scalese, S., La Via, F., and Foti, G.: Thin crystalline 3C-SiC layer growth through carbonization of differently oriented Si substrates. J. Appl. Phys. 102(2), 023518 (2007).
3.Portail, M., Zielinski, M., Chassagne, T., Roy, S., and Nemoz, M.: Comparative study of the role of the nucleation stage on the final crystalline quality of (111) and (100) silicon carbide films deposited on silicon substrates. J. Appl. Phys. 105(8), 083505 (2009).
4.Nishino, S., Powell, J.A., and Will, H.A.: Production of large-area single-crystal wafers of cubic SiC for semiconductor-devices. Appl. Phys. Lett. 42, 460 (1983).
5.Mogab, C.J. and Leamy, H.J.: Conversion of Si to epitaxial SiC by reaction with C2H2. J. Appl. Phys. 45, 1075 (1974).
6.Li, J.P. and Steckl, A.J.: Nucleation and void formation mechanisms in SiC thin-film growth on Si by carbonization. J. Electrochem. Soc. 142, 634 (1995).
7.Stinespring, C.D. and Wormhoudt, J.C.: Surface studies relevant to silicon carbide chemical vapor deposition. J. Appl. Phys. 65, 1733 (1989).
8.Becourt, N., Cros, B., Ponthenier, J.L., Berjoan, R., Papon, A.M., and Jaussaud, C.: Characterization of the buffer layer in SiC heteroepitaxy. Appl. Surf. Sci. 68, 461 (1993).
9.Kim, H.J., Davis, R.F., Cox, X.B., and Linton, R.W.: Physical and chemical nature of films formed on Si (100) surfaces subjected to C2H4 at elevated temperatures. J. Electrochem. Soc. 134, 2269 (1987).
10.Cimalla, V., Karagodina, K.V., Pezoldt, J., and Eichhorn, G.: Growth of thin beta-SiC layers by carbonization of Si surfaces by rapid thermal processing. Mater. Sci. Eng., B 29, 170 (1995).
11.Ferro, G., Monteil, Y., Vincent, H., Cauwet, F., Bouix, J., Durupt, P., Olivier, J., and Bisaro, R.: Infrared kinetic study of ultrathin SiC buffer layers grown on Si (100) by reactive chemical vapour deposition. Thin Solid Films 278(1–2), 22 (1996).
12.Steckl, A.J. and Li, J.P.: Epitaxial-growth of beta-SiC on Si by RTCVD with C3H8 and SiH4. IEEE Trans. Electron Devices 39, 64 (1992).
13.Kordina, O., Bjorketun, L.O., Henry, A., Hallin, C., Glass, R.C., Hultman, L., Sundgren, J.E., and Janzen, E.: Growth of 3C-SiC on on-axis Si (100) substrates by chemical vapor deposition. J. Cryst. Growth 154, 303 (1995).
14.Cimalla, V., Pezoldt, J., Ecke, G., Rossler, H., and Eichhorn, G.: Characterization of buffer layers for CVD. J. Phys. IV 5, 863 (1995).
15.Gupta, A., Sengupta, J., and Jacob, C.: An atomic force microscopy and optical microscopy study of various shaped void formation and reduction in 3C-SiC films grown on Si using chemical vapor deposition. Thin Solid Films 516(8), 1669 (2008).
16.Yoshinobu, T., Mitsui, H., Tarui, Y., Fuyuki, T., and Matsunami, H.: Heteroepitaxial growth of single crystalline 3C-SiC on Si substrates by gas source molecular beam epitaxy. J. Appl. Phys. 72(5), 2006 (1992).
17.Bittencourt, C.: Formation of a SiC buffer layer by reaction of Si (100) with methane and hydrogen plasma. J. Phys. D: Appl. Phys. 32(19), 2478 (1999).
18.Zielinski, M., Ndiaye, S., Chassagne, T., Juillaguet, S., Lewandowska, R., Portail, M., Leycuras, A., and Camassel, J.: Strain and wafer curvature of 3C-SiC films on silicon: Influence of the growth conditions. Phys. Status Solidi A 204(4), 981 (2007).
19.Hens, P., Wagner, G., Hölzing, A., Hock, R., and Wellmann, P.: Dependence of the seed layer quality on different temperature ramp-up conditions for 3C-SiC hetero-epitaxy on Si (100). Thin Solid Films (2011, in press). doi:10.1016/j.tsf.2011.10.177.
20.Chen, Y.: Crystal growth of 3C-SiC on Si (100) substrate using HMDS single precursor by APCVD. Doctor degree, Department of Electronics and Information Science, Kyoto Institute of Technology, Kyoto, Japan (1999).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed