Skip to main content Accessibility help
×
Home

Superstructural nanodomains of ordered carbon vacancies in nonstoichiometric ZrC0.61

  • Wentao Hu (a1), Jianyong Xiang (a1), Yang Zhang (a1), Shaocun Liu (a1), Cankun Chen (a1), Peng Wang (a1), Haitao Wang (a1), Fusheng Wen (a1), Bo Xu (a1), Julong He (a1), Dongli Yu (a1), Yongjun Tian (a1) and Zhongyuan Liu (a1)...

Abstract

We report here investigations on the superstructure modulation induced by the ordering of carbon vacancies in the nonstoichiometric zirconium carbide of ZrC0.61, which was prepared by spark plasma sintering (SPS) of the mechanochemically synthesized ZrCx nanopowders. The sintered ZrC0.61 is found to exhibit an interesting microstructure of interlaced laminated sheets. In contrast to the previous long duration post annealing for realization of the ordered carbon vacancies in the rocksalt-structured transition metal carbide, the ordered carbon vacancies are directly obtained during the SPS process, and no post-annealing period is necessary. With the help of transmission electron microscopy, the superstructural nanodomains with the average size of ∼30 nm are identified.

Copyright

Corresponding author

a)Address all correspondence to these author. e-mail: fhcl@ysu.edu.cn

References

Hide All
1.Pierson, H.O.: Handbook of Refractory Carbides and Nitrides -Properties, Characteristics, Processing and Applications (William Andrew publishing/Noyes, Westwood, NJ, 1996).
2.Lipatnikov, V.N., Rempel, A.A., and Gusev, A.I.: Ordering and hardness of nonstoichiometric titanium carbide. Int. J. Refract. Met. Hard Mater 15, 61 (1997).
3.Zueva, L.V., Lipatnikov, V.N., and Gusev, A.I.: Ordering effects on the microstructure and microhardness of nonstoichiometric titanium carbide TiCy. Inorg. Mater. 36, 695 (2000).
4.Lipatnikov, V.N., Lengauer, W., Ettmayer, P., Keil, E., Groboth, G., and Kny, E.: Effects of vacancy ordering on structure and properties of vanadium carbide. J. Alloys Compd. 261, 192 (1997).
5.Morgan, G. and Lewis, M.H.: Hardness anisotropy in niobium carbide. J. Mater. Sci. 9, 349 (1974).
6.Valeeva, A., Davydov, D., Rempel, S., and Rempel, A.: Microstructure and microhardness of vanadium oxides in the range VO0.57–VO1.29. Inorg. Mater. 45, 905 (2009).
7.Miracle, D.B. and Lipsitt, H.A.: Mechanical properties of fine-grained substoichiomebic titanium carbide. J. Am. Ceram. Soc. 66, 592 (1983).
8.Tsurekawa, S., Kurishita, H., and Yoshinaga, H.: High temperature deformation mechanism in substoichiometric titanium carbide-correlation with carbon vacancy ordering. J. Nucl. Mater. 169, 291 (1989).
9.Obata, N. and Nakazawa, N.: Superlattice formation in zirconium-carbon system. J. Nucl. Mater. 60, 39 (1976).
10.Gusev, A.I. and Rempel, A.A.: A study of the atomic ordering in the niobium carbide using the magnetic susceptibility method. Phys. Status Solidi A 84, 527 (1984).
11.Gusev, A.I.: Order-disorder transformation and phase equilibria in strongly nonstoichiometric compounds. Phys. Usp. 43, 1 (2000).
12.Bulychev, V.P., Andrievskii, R.A., and Nezhevenko, L.B.: The sintering of zirconium carbide. Powder Metall. Met. Ceram. 16, 273 (1977).
13.Gusev, A.I. and Rempel, A.A.: Superstructures of nonstoichiometric interstitial compounds and the distribution functions of interstitial atoms. Phys. Status Solidi A 135, 15 (1993).
14.Goretzki, H.: Neutron diffraction studies on titanium-carbon and zirconium-carbon alloys. Phys. Status Solidi B 20, K141 (1967).
15.De Novion, C.H. and Moisy-Maurice, V.: Order and disorder in carbides and nitrides. J. Phys. Colloq. 38(C7), 211 (1977).
16.Moisy-Maurice, V., Lorenzelli, N., De Novion, C.H., and Convert, P.: Study of the order-disorder transition in TiC l-x. Acta Metall. 30, 1769 (1982).
17.Fu, Y.Q., Gu, Y.W., Shearwood, C., Luo, J.K., Flewitt, A.J., and Milne, W.I.: Spark plasma sintering of TiNi nanopowders for biological application. Nanotechnology 17, 5293 (2006).
18.Zhang, Z.H., Wang, F.C., Wang, L., and Li, S.K.: Sintering mechanism of large-scale ultrafine-grained copper prepared by SPS method. Mater. Lett. 62, 3987 (2008).
19.Zhang, Z.H., Wang, F.C., Li, S.K., Shen, M.W., and Osamu, S.: Microstructural characteristics of large-scale ultrafine-grained copper. Mater. Charact. 59, 329 (2008).
20.Xu, C.Y., Jia, S.S., and Cao, Z.Y.: Synthesis of Al-Mn-Ce alloy by the spark plasma sintering. Mater. Charact. 54, 394 (2005).
21.Kim, K.H. and Shim, K.B.: The effect of lanthanum on the fabrication of ZrB2-ZrC composites by spark plasma sintering. Mater. Charact. 50, 31 (2003).
22.Chen, W., Anselmi-Tamburini, U., Garay, J.E., Groza, J.G., and Munir, Z.A.: Fundamental investigations on the spark plasma sintering/synthesis process I. Effect of DC pulsing on reactivity. Mater. Sci. Eng., A 394, 132 (2005).
23.Wan, X.H., Hu, A.M., Li, M., Chang, C.K., and Mao, D.: Performances of CaSiO3 ceramic sintered by spark plasma sintering. Mater. Charact. 59, 256 (2008).
24.Zhao, L.Y., Jia, D.C., Duan, X.M., Yang, Z.H., and Zhou, Y.: Low temperature sintering of ZrC-SiC composite. J. Alloys Compd. 509, 9816 (2011).
25.Sreenivasulu, G., Gopalan, R., Chandrasekaran, V., Markandeyulu, G., Suresh, K.G., and Murty, B.S.: Spark plasma sintered Sm2Co17-FeCo nanocomposite permanent magnets synthesized by high energy ball milling. Nanotechnology 19, 335701 (2008).
26.Zhang, Z.H., Wang, F.C., Wang, L., and Li, S.K.: Ultrafine-grained copper prepared by spark plasma sintering process. Mater. Sci. Eng., A 476, 201 (2008).
27.Shearwood, C., Fu, Y.Q., Yu, L., and Khor, K.A.: Spark plasma sintering of TiNi nanopowder. Scr. Mater. 52, 455 (2005).
28.Kim, G.S., Shin, D.H., Seo, Y.I., and Kim, Y.D.: Microstructure and mechanical properties of a ZnS-SiO2 composite prepared by ball milling and spark plasma sintering. Mater. Charact. 59, 1201 (2008).
29.Kumar, R., Prakash, K.H., Cheang, P., and Khor, K.A.: Microstructure and mechanical properties of spark plasma sintered zirconia-hydroxyapatite nanocomposite powders. Acta Mater. 53, 2327 (2005).
30.Xiang, J.Y., Liu, S.C., Hu, W.T., Zhang, Y., Chen, C.K., Wang, P., He, J.L., Yu, D.L., Xu, B., Lu, Y.F., Tian, Y.J., and Liu, Z.Y.: Mechanochemically activated synthesis of zirconium carbide nanoparticles at room temperature: A simple route to prepare nanoparticles of transition metal carbides. J. Eur. Ceram. Soc. 31, 1491 (2011).
31.Xiang, J.Y., Hu, W.T., Liu, S.C., Chen, C.K., Zhang, Y., Wang, P., Wang, H.T., Wen, F.S., Xu, B., Yu, D.L., He, J.L., Tian, Y.J., and Liu, Z.Y.: Spark plasma sintering of the nonstoichiometric ultrafine-grained titanium carbides with nano superstructural domains of the ordered carbon vacancies. Mater. Chem. Phys. 130, 352 (2011).
32.Lipatnikov, V.N. and Gusev, A.I.: Annealing-induced ordering of bulk nonstoichiometric vanadium carbide. Inorg. Mater. 42, 14 (2006).
33.De Novion, A.H. and Landesman, J.P.: Order and disorder in transition metal carbides and nitrides: Experimental and theoretical aspects. Pure Appl. Chem. 57, 1391 (1985).
34.Valeeva, A.A., Tang, G., Gusev, A.I., and Rempel, A.A.: Observation of structural vacancies. JETP Lett. 77, 25 (2003).
35.Nagakura, S. and Kusunoki, T.: Structure of TiNx studied by electron diffraction and microscopy. J. Appl. Crystallogr. 10, 52 (1977).
36.Moisy-Maurice, V. and De Novion, C.H.: An application of Ti-K x-ray absorption edges and fine structures to the study of substoichiometric titanium carbide TiC1-x. J. Phys. France 49, 1737 (1988).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed