Skip to main content Accessibility help

Superplasticity in NiAl and NiAl-based alloys

  • J. J. Guo (a1), X. X. Du (a2), L. L. Zhou (a1), B. D. Zhou (a3), Y. Y. Qi (a1) and G. G. Li (a1)...


Superplastic deformation was realized on NiAl and NiAl-based alloys prepared by both common casting and directional solidification. Directionally solidified NiAl–27Fe–3Nb alloy as well as conventionally cast NiAl, NiAl–25Cr, NiAl–9Mo, NiAl–20Fe–Y.Ce, and NiAl–30Fe–Y alloys exhibited typical deformation characteristics shown in conventionally superplastic materials. NiAl and NiAl-based alloys could be divided into three categories depending on their different superplastic behavior: finely grained structure (NiAl–9Mo, NiAl–25Cr, NiAl–20.4Fe–Y.Ce, NiAl–30Fe–Y), coarsely grained structure (NiAl), and columnar structure (NiAl–27Fe–3Nb). The corresponding deformation mechanisms for fine-grained structure, coarsely grained structure, and columnar structure were grain boundary sliding or grain boundary sliding accompanied by dynamic recrystallization, dynamic recovery and recrystallization, and intragrain dislocation slip, respectively.



Hide All
1.Miracle, D.B., Acta Metal Mater. 41, 649 (1993).
2.Nieh, T.G. and Wadsworth, J., Int. Mater. Rev. 44, 59 (1999).
3.Li, D.Q., Shan, A., and Lin, T.L., Scripta Metall Mater. 33, 681 (1995).
4.Lin, T.L., Shan, A., and Li, D., Scripta Metall Mater. 31, 1455 (1994).
5.Liu, Y., Li, D., and Lin, T.L., Scripta Metall Mater. 34, 1095 (1996).
6.Noebe, R.D., Bowman, P.R., and Nathal, M.V., NASA Technical Paper 3398 (1994).
7.Backofen, W.A., Turner, I.R., and Avery, D.H., Trans. ASM 57, 980 (1964).
8.Guha, S., Baker, I., Munroe, P.R., and Michael, J.R., Mater. Sci. Eng. A152, 2588 (1992).
9.Subramanian, P.R., Mendiratta, M.G., and Miracle, D.B., Metall. Mater. Trans. 25A, 2769 (1994).
10.Gale, W.F. and Nemani, R.V., Mater. Sci. Eng. A192/193, 868 (1995).
11.Noebe, R.D. and Cullers, C.L., J. Mater. Res. 7, 604 (1992).
12.Nie, T.G., Wadsworth, J., Sherby, O.D., Superplasticity in Metals and Ceramics (Cambrige University Press, Cambridge, United Kingdom, 1997), p. 125.
13.Lautenschlager, E.P., Tisone, T.C., and Brittain, J.O., Phas. Stat. Sol. 20, 443 (1967).
14.Kim, W.Y., Handa, S., and Takasugi, T., Scripta Mater. 37, 1053 (1991).
15.Sherby, O.D. and Wadsworth, J., Prog. Mater. Sci. 33, 169 (1989).
16.Novikov, I.I., Portnoy, V.K., Titov, A.O., and D.Yu. Belov, Scripta Mater. 42, 899 (2000).
17.Novikov, I.I., Portnoy, V.K., Levchenko, V.S., and Nikiforov, A.O., Mater. Sci. Form. 463, 243 (1997).

Related content

Powered by UNSILO

Superplasticity in NiAl and NiAl-based alloys

  • J. J. Guo (a1), X. X. Du (a2), L. L. Zhou (a1), B. D. Zhou (a3), Y. Y. Qi (a1) and G. G. Li (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.