Skip to main content Accessibility help

Superfluous oxygen diffusion induced amorphization of ZrC0.6O0.4 and transformation of amorphous layer under electron beam irradiation

  • Xiaopu Li (a1) and Wentao Hu (a1)


On the powder surface of oxygen-ordered ZrC0.6O0.4 obtained via isothermal heating of vacancy-ordered ZrC0.6 at 300 °C, an amorphous ZrC0.6O y>0.4 layer in nanoscaled thickness is found to form if the heating lasts long enough. With the help of high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) measurements, the amorphous formation is recognized to originate from diffusion of superfluous oxygen atoms into Zr-tetrahedral centers in the surface area, thus leading to severe distortion of the lattice. In situ investigation of HRTEM, SAED, and electron energy loss spectra demonstrates that under electron irradiation of sufficient dose, the amorphous ZrC0.6O y>0.4 layer transforms into a cubic ZrO2−x layer with the same orientation as the underlying ordered ZrC0.6O0.4.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Pierson, H.O.: Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications (William Andrew/Noyes, New Jersey, 1996).
2. Sara, R.V.: The system zirconium-carbon. J. Am. Ceram. Soc. 48, 243247 (1965).
3. Toth, L.E.: Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).
4. Oyama, S.T.: The Chemistry of Transition Metal Carbides and Nitrides (Blackie Academic & Professional, Glasgow, 1996).
5. Ogawa, T. and Ikawa, K.: Diffusion of metal fission products in zirconium carbide ZrC1 . J. Nucl. Mater. 105, 331334 (1982).
6. Rama Rao, G.A. and Venugopal, V.: Kinetics and mechanism of the oxidation of ZrC. J. Alloys Compd. 206, 237242 (1994).
7. Shimada, S., Inagaki, M., and Suzuki, M.: Microstructural observation of the ZrC/ZrO2 interface formed by oxidation of ZrC. J. Mater. Res. 11, 25942597 (1996).
8. Shimada, S.: Oxidation and mechanism of single crystal carbides with formation of carbon. J. Ceram. Soc. Jpn. 109, S33S42 (2001).
9. Shimada, S.: A thermoanalytical study on the oxidation of ZrC and HfC powders with formation of carbon. Solid State Ionics 149, 319326 (2002).
10. Shimada, S.: TEM observation of the ZrC/ZrO2 interface formed by oxidation of ZrC single crystals. J. Mater. Synth. Process. 6, 191195 (1998).
11. Bellucci, A., Gozzi, D., Kimura, T., Noda, T., and Otani, S.: Zirconia growth on zirconium carbide single crystals by oxidation. Surf. Coat. Technol. 197, 294302 (2005).
12. Gozzia, D., Montozzi, M., and Cignini, P.L.: Oxidation kinetics of refractory carbides at low oxygen partial pressures. Solid State Ionics 123, 1118 (1999).
13. Rodriguez, J.A., Liu, P., Gomes, J., Nakamura, K., Viñes, F., Sousa, C., and Illas, F.: Interaction of oxygen with ZrC(001) and VC(001): Photoemission and first-principles studies. Phys. Rev. B 72, 075427-1-11 (2005).
14. Edamoto, K., Nagayama, T., Ozawa, K., and Otani, S.: Angle-resolved and resonant photoemission study of the ZrO-like film on ZrC(100). Surf. Sci. 601, 50775082 (2007).
15. Håkansson, K.L., Johansson, H.I.P., and Johansson, L.I.: High-resolution core-level study of ZrC(100) and its reaction with oxygen. Phys. Rev. B 48, 26232626 (1993).
16. Gusev, A.I.: Order–disorder transformations and phase equilibria in strongly nonstoichiometric compounds. Phys.-Usp. 43, 137 (2000).
17. Xiang, J.Y., Liu, S.C., Hu, W.T., Zhang, Y., Chen, C.K., Wang, P., He, J.L., Yu, D.L., Xu, B., Lu, Y.F., Tian, Y.J., and Liu, Z.Y.: Mechanochemically activated synthesis of zirconium carbide nanoparticles at room temperature: A simple route to prepare nanoparticles of transition metal carbides. J. Eur. Ceram. Soc. 31, 14911496 (2011).
18. Hu, W.T., Xiang, J.Y., Zhang, Y., Liu, S.C., Chen, C.K., Wang, P., Wang, H.T., Wen, F.S., Xu, B., He, J.L., Yu, D.L., Tian, Y.J., and Liu, Z.Y.: Superstructural nanodomains of ordered carbon vacancies in nonstoichiometric ZrC0.61 . J. Mater. Res. 27, 12301236 (2012).
19. Hu, W.T., Liu, S.C., Zhang, Y., Chen, C.K., Xiang, J.Y., Wang, P., Wang, H.T., Wen, F.S., Xu, B., He, J.L., Yu, D.L., Tian, Y.J., and Liu, Z.Y.: Low-temperature diffusion of oxygen through ordered carbon vacancies in Zr2C x : The formation of ordered Zr2C x O y . Inorg. Chem. 51, 51645172 (2012).
20. Shimada, S. and Kozeki, M.: Oxidation of TiC at low temperatures. J. Mater. Sci. 27, 18691875 (1992).
21. Shimada, S. and Ishii, T.: Oxidation kinetics of zirconium carbide at relatively low temperatures. J. Am. Ceram. Soc. 73, 28042808 (1990).
22. Singhal, S.C.: Oxidation kinetics of hot-pressed silicon carbide. J. Mater. Sci. 11, 12461253 (1976).
23. Reyes-Gasga, J. and García-García, R.: Analysis of the electron-beam radiation damage of TEM samples in the acceleration energy range from 0.1 to 2 MeV using the standard theory for fast electrons. Radiat. Phys. Chem. 64, 359367 (2002).
24. Takeda, S.: An atomic model of electron-irradiation-induced defects on {113} in Si. Jpn. J. Appl. Phys. 30, L639L642 (1991).
25. Teweldebrhan, D. and Balandin, A.A.: Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 94, 013101 (2009).
26. Thomas, G., Mori, H., Fujita, H., and Sinclair, R.: Electron irradiation induced crystalline amorphous transitions in Ni-Ti alloys. Scr. Mater. 16, 589592 (1982).
27. Mori, H.: Solid-state amorphization by irradiation. In Current Topics in amorphous Materials: Physics and Technology, Elsevier Science Publishers: Amsterdam, 1997.
28. Okamoto, P.R., Lam, N.Q., and Rein, L.E.: Physics of Crystal-to-glass transformations. In Solid State Physics: Physics of Crystal-to-Glass Transformations, Vol. 52 (Academic Press, San Diego, 1999).
29. Jenčič, I., Bench, M.W., Robertson, I.M., and Kirk, M.A.: Electron-beam-induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs. J. Appl. Phys. 78, 974982 (1995).
30. Corticelli, F., Lulli, G., and Meili, P.G.: Solid-phase epitaxy of implanted silicon at liquid nitrogen and room temperature induced by electron irradiation in the electron microscope. Philos. Mag. Lett. 60, 101106 (1990).
31. Elliman, R.G., William, J.S., Maher, D.M., and Brown, W.L.: Kinetics, microstructure and mechanisms of ion beam induced epitaxial crystallization of semiconductors. Mater. Res. Soc. Symp. Proc. 51, 319327 (1985).
32. Miyao, M., Polman, A., Sinke, W., Saris, F.W., and van Kemp, R.: Electron irradiation activated low temperature annealing of phosphorus implanted silicon. Appl. Phys. Lett. 48, 11321134 (1986).
33. Frantz, J., Tarus, J., Nordlund, K., and Keinonen, J.: Mechanism of electron-irradiation-induced recrystallization in Si. Phys. Rev. B 64, 125313 (2001).
34. Kern, P., Jäggi, C., Utke, I., Friedli, V., and Michler, J.: Local electron beam induced reduction and crystallization of amorphous titania films. Appl. Phys. Lett. 89, 021902 (2006).
35. Nagase, T. and Umakoshi, Y.: Electron irradiation induced crystallization of the amorphous phase in Zr-Cu based metallic glasses with various thermal stability. Mater. Trans. 45, 1323 (2004).
36. Nagase, T., Nino, A., and Umakoshi, Y.: Phase stability of an amorphous phase against electron irradiation induced crystallization in Fe-based metallic glasses. Mater. Trans. 48, 13401349 (2007).
37. Roddatis, V.V., Su, D.S., Beckmann, E., Jentoft, F.C., Braun, U., Kröhnert, J., and Schlögl, R.: The structure of thin zirconia films obtained by self-assembled monolayer mediated deposition: TEM and HREM study. Surf. Coat. Technol. 151–152, 6366 (2002).
38. Grunes, L.A., Leapman, R.D., Wilker, C.N., Hoffmann, R., and Kunz, A.B.: Oxygen K near-edge fine structure: An electron-energy-loss investigation with comparisons to new theory for selected 3d transition-metal oxides. Phys. Rev. B. 25, 71577173 (1982).
39. Wang, G., Luo, G., Soo, Y.L., Sabirianov, R.F., Lin, H., Mei, W., Namavar, F., and Cheung, C.: Phase stabilization in nitrogen-implanted nanocrystalline cubic zirconia. Phys. Chem. Chem. Phys. 13, 1951719525 (2011).
40. Gosset, D., Dollé, M., Simeone, D., and Baldinozzi, G., and Thomé, L.: Structural evolution of zirconium carbide under ion irradiation. J. Nucl. Mater. 373, 123129 (2008).
41. Edmondson, P.D., Weber, W.J., Namavar, F., and Zhang, Y.: Determination of the displacement energies of O, Si and Zr under electron beam irradiation. J. Nucl. Mater. 422, 8691 (2011).


Type Description Title
Supplementary materials

Li and Hu supplementary material
Li and Hu supplementary material 1

 Word (88 KB)
88 KB

Superfluous oxygen diffusion induced amorphization of ZrC0.6O0.4 and transformation of amorphous layer under electron beam irradiation

  • Xiaopu Li (a1) and Wentao Hu (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed