Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T19:33:59.084Z Has data issue: false hasContentIssue false

Superconducting fibers from organometallic precursors: Part III. Pyrolytic processing of precursor fibers

Published online by Cambridge University Press:  31 January 2011

Zhi-Fan Zhang
Affiliation:
Polymeric Materials Laboratory of the Washington Technology Center and the Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
Richard A. Kennish
Affiliation:
Polymeric Materials Laboratory of the Washington Technology Center and the Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
Blohowiak Kay A. Youngdahl
Affiliation:
Polymeric Materials Laboratory of the Washington Technology Center and the Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, and Boeing Corporation, Seattle, Washington
Martin L. Hoppe
Affiliation:
Polymeric Materials Laboratory of the Washington Technology Center and the Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
Richard M. Laine
Affiliation:
Polymeric Materials Laboratory of the Washington Technology Center and the Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195
Get access

Abstract

Sixty−70 μm diameter preceramic fibers, extruded from THF solutions containing 1:2:3 stoichiometric mixtures of yttrium, barium, and copper carboxylates, were pyrolytically transformed into ceramic fibers using controlled heating schedules and reactive atmospheres. The objectives of the work reported here were to identify appropriate processing conditions such that during pyrolysis the preceramic fibers would (1) eliminate the organic ligands without pore or void formation, (2) reach full density with a controlled grain size, and (3) form orthorhombic phase, 123 fibers with reasonable mechanical properties. The mechanisms of organic ligand decomposition and loss were examined using mass spectral fragmentation and TGA. Microstructural and phase evolution were correlated with heating schedules and atmospheres, using XRD, DTA, SEM, and limited flux exclusion studies. The mechanisms of decomposition of the spinnable mixtures suggest intermolecular rather than intramolecular decomposition pathways. Different pyrolysis atmospheres were also examined to explore methods of controlling the degradation process. Slow pyrolysis in air followed by oxygen anneals appears to give superior fibers in terms of controlled grain size and phase. The pyrolyzed fibers exhibit the appropriate orthorhombic phase according to x-ray powder diffractometry. Preliminary flux exclusion measurements demonstrate that the fibers are superconducting although the measured δTc is not exceptional.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1First paper in this series: Carty, W. M., Stangle, G. C., Laine, R. M., and Youngdahl, K.A., SAMPE 1988 Spring Meeting (Seattle) SAMPE Quart., October (1988), p. 3.Google Scholar
2Second paper: Laine, R. M., Youngdahl, K. A., Kennish, R. A., Hoppe, M. L., Zhang, Z.- F., and Ray, J., J. Mater. Res. 6, 895 (1991); R. M. Laine and K. A. Youngdahl, U.S. Patent No. 5071 833.CrossRefGoogle Scholar
3Laine, R. M. and Babonneau, F., Chem. Mater. (1993, in press).Google Scholar
4(a) Jin, S., Sherwood, R. C., Dover, R. B. van, Tiefel, T. H., and Johnson, D.W., Appl. Phys. Lett. 51, 203 (1987); (b) Y. Yamada, N. Fukushima, S. Nakayama, H. Yoshino, and S. Murase, Jpn. J. Appl. Phys. 26, L865 (1987); (c) M. A. Lusk, J. A. Lund, A. C. D. Chaklader, M. Burbank, A. A. Fife, S. Lee, F. Taylor, and J. Vrba, Supercond. Sci. Technol. 1, 137 (1988); (d) N. Sadakata, Y. Ikeno, M. Nakagawa, K. Gotoh, and O. Kohno, in High-Temperature Superconductors, edited by M. B. Brodsky, R. C. Dynes, K. Kitazawa, and H. L. Tuller (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, p. 293; (e) S. Matsuda, M. Okada, T. Morimoto, T. Matsumoto, and K. Aihara, in High-Temperature Superconductors, edited by M. B. Brodsky, R. C. Dynes, K. Kitazawa, and H. L. Tuller (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 695.Google Scholar
5(a) Jin, S., Tiefel, T.H., Sherwood, R.C., Kammlott, G.W., and Zahurak, S.M., Appl. Phys. Lett. 51 (12), 943 (1987); (b) M. Miljak, E. Babic, A. Hamzic, G. Bratina, and Z. Marohnic, Supercon. Sci. Technol. 1, 141 (1988).Google Scholar
6(a) Gazit, D. and Geigelson, R. S., J. Cryst. Growth 91, 318 (1988); (b) R. S. Geigelson, D. Gazit, D. K. Fork, and G. H. Geballe, Sci. 240, 1642 (1988); (c) G.T. Forrest, Laser Focus 24, 40 (1988).Google Scholar
7(a) Halloran, J. W., Hodge, J. D., Chandler, D., Klemptner, L. J., Neal, M., Parish, M., Park, H., Pathare, V., Bakis, G., and Eagles, D., J. Am. Ceram. Soc. 75, 903 (1992); (b) T. Goto and M. Tsujihara, J. Mater. Sci. Lett. 7, 283 (1988); (c) T. Goto and I. Horiba, Jpn. J. Appl. Phys. 26 (12), L1970 (1987); (d) J. C. W. Chien and B. M. Gong, Phys. Rev. B 38 (16), 11.853 (1988); (e) J.C.W. Chien, Polym. Bull. 21, 1 (1989); (f)S.E. Dorris, J.T. Dusek, M.T. Lanagan, J. J. Picciolo, J. P. Singh, J. E. Creech, and R. B. Poeppel, Ceram. Bull. 70, No. 4 (1991).CrossRefGoogle Scholar
8(a) Uchikawa, F., Zheng, H., Chen, K. C., and Mackenzie, J. D., in Extended Abstracts No. 14, High-Temperature Superconductors II, edited by II, D.W. Capone, Butler, W.H., Batlogg, A., and Chu, C.W. (Materials Research Society, Pittsburgh, PA, 1988), p. 89; (b) T. Umeda, H. Kozuka, and S. Sakka, Adv. Ceram. Mater. 3 (5), 520 (1988); (c) H. Zhuang, H. Kozuka, and S. Sakka, Jpn. J. Appl. Phys. 28 (10), L1805 (1989); (d) S. Katayama and M. Sekine, J. Mater. Res. 6, 1629 (1991).Google Scholar
9Goto, T. and Sugishita, T., J. Mater. Res. 7, 11 (1992).CrossRefGoogle Scholar
10Kumagai, T., Yokota, H., Kawaguchi, K., Kondo, W., and Mizuta, S., Chem. Lett., 1465 (1987).Google Scholar
11Nasu, H., Makida, S., Kato, T., Ibara, Y., Imura, T., and Osaka, Y., Chem. Lett., 2403 (1987).Google Scholar
12Kumagai, T., Kondo, W., Yokota, H., Minamiue, H., and Mizuta, S., Chem. Lett., 551 (1988).Google Scholar
13Rice, C. E., Dover, R.B. van, and Fisanick, G.J., Appl. Phys. Lett. 51 (22), 1842 (1987).CrossRefGoogle Scholar
14Hamdi, A. H., Mantese, J. V., Micheli, A. L., Laugal, R. C. O., and Dungan, D. F., Appl. Phys. Lett. 51 (25), 2152 (1987).CrossRefGoogle Scholar
15Gross, M.E., Hong, M., Liou, S.H., Gallagher, P.K., and Kwo, J., Appl. Phys. Lett. 52, 160 (1988).Google Scholar
16Gupta, A., Jagannathan, R., Cooper, E. I., Giess, E. A., Landman, J. I., and Hussey, B. W., Appl. Phys. Lett. 52 (24), 2077 (1988).Google Scholar
17Vaslow, D.F., Dieckmann, G.H., Elli, D.D., Ellis, A.B., Holmes, D.S., Lefkow, A., MacGregor, M., Nordman, J. E., Petras, M. F., and Yang, Y., Appl. Phys. Lett. 53 (4), 324 (1988).Google Scholar
18Davison, W.W., Shyu, S.G., and Buchanan, R.C., in High-Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H.L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 289.Google Scholar
19Klee, M., Brand, W., and DeVries, J.W.C., J. Cryst. Growth 91, 346 (1988).Google Scholar
20Klee, M., Stollman, G. M., Stotz, S., and DeVries, J. W. C., Solid State Commun. 67, 613 (1988).Google Scholar
21Shimojima, H., Tsukamoto, K., and Yamagishi, C., Jpn. J. Appl. Phys. 28 (2), L226 (1989).Google Scholar
22Chen, Y.L., Mantese, J.V., Hamdi, A.H., and Micheli, A.L., J. Mater. Res. 4, 1065 (1989).Google Scholar
23(a) O'Bryan, H. M., Gallagher, P. K., Laudise, R. A., Caporaso, A. J., and Sherwood, R.C., J. Am. Ceram. Soc. 72, 1298–1300 (1989); (b) T. B. Lindemer, J. F. Hunley, J. E. Gates, A. L. Sutton, Jr., J. Brynestad, C. R. Hubbard, and P. K. Gallagher, J. Am. Ceram. Soc. 72, 1775–1788 (1989).CrossRefGoogle Scholar
24Drew, M. G.B., Edwards, D.A., and Richards, R., Chem, J.C.S.. Commun., 124 (1973).Google Scholar