Skip to main content Accessibility help
×
Home

Superconducting fibers from organometallic precursors: Part III. Pyrolytic processing of precursor fibers

  • Zhi-Fan Zhang (a1), Richard A. Kennish (a1), Blohowiak Kay A. Youngdahl (a2), Martin L. Hoppe (a1) and Richard M. Laine (a1)...

Abstract

Sixty−70 μm diameter preceramic fibers, extruded from THF solutions containing 1:2:3 stoichiometric mixtures of yttrium, barium, and copper carboxylates, were pyrolytically transformed into ceramic fibers using controlled heating schedules and reactive atmospheres. The objectives of the work reported here were to identify appropriate processing conditions such that during pyrolysis the preceramic fibers would (1) eliminate the organic ligands without pore or void formation, (2) reach full density with a controlled grain size, and (3) form orthorhombic phase, 123 fibers with reasonable mechanical properties. The mechanisms of organic ligand decomposition and loss were examined using mass spectral fragmentation and TGA. Microstructural and phase evolution were correlated with heating schedules and atmospheres, using XRD, DTA, SEM, and limited flux exclusion studies. The mechanisms of decomposition of the spinnable mixtures suggest intermolecular rather than intramolecular decomposition pathways. Different pyrolysis atmospheres were also examined to explore methods of controlling the degradation process. Slow pyrolysis in air followed by oxygen anneals appears to give superior fibers in terms of controlled grain size and phase. The pyrolyzed fibers exhibit the appropriate orthorhombic phase according to x-ray powder diffractometry. Preliminary flux exclusion measurements demonstrate that the fibers are superconducting although the measured δTc is not exceptional.

Copyright

References

Hide All
1First paper in this series: Carty, W. M., Stangle, G. C., Laine, R. M., and Youngdahl, K.A., SAMPE 1988 Spring Meeting (Seattle) SAMPE Quart., October (1988), p. 3.
2Second paper: Laine, R. M., Youngdahl, K. A., Kennish, R. A., Hoppe, M. L., Zhang, Z.- F., and Ray, J., J. Mater. Res. 6, 895 (1991); R. M. Laine and K. A. Youngdahl, U.S. Patent No. 5071 833.
3Laine, R. M. and Babonneau, F., Chem. Mater. (1993, in press).
4(a) Jin, S., Sherwood, R. C., Dover, R. B. van, Tiefel, T. H., and Johnson, D.W., Appl. Phys. Lett. 51, 203 (1987); (b) Y. Yamada, N. Fukushima, S. Nakayama, H. Yoshino, and S. Murase, Jpn. J. Appl. Phys. 26, L865 (1987); (c) M. A. Lusk, J. A. Lund, A. C. D. Chaklader, M. Burbank, A. A. Fife, S. Lee, F. Taylor, and J. Vrba, Supercond. Sci. Technol. 1, 137 (1988); (d) N. Sadakata, Y. Ikeno, M. Nakagawa, K. Gotoh, and O. Kohno, in High-Temperature Superconductors, edited by M. B. Brodsky, R. C. Dynes, K. Kitazawa, and H. L. Tuller (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, p. 293; (e) S. Matsuda, M. Okada, T. Morimoto, T. Matsumoto, and K. Aihara, in High-Temperature Superconductors, edited by M. B. Brodsky, R. C. Dynes, K. Kitazawa, and H. L. Tuller (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 695.
5(a) Jin, S., Tiefel, T.H., Sherwood, R.C., Kammlott, G.W., and Zahurak, S.M., Appl. Phys. Lett. 51 (12), 943 (1987); (b) M. Miljak, E. Babic, A. Hamzic, G. Bratina, and Z. Marohnic, Supercon. Sci. Technol. 1, 141 (1988).
6(a) Gazit, D. and Geigelson, R. S., J. Cryst. Growth 91, 318 (1988); (b) R. S. Geigelson, D. Gazit, D. K. Fork, and G. H. Geballe, Sci. 240, 1642 (1988); (c) G.T. Forrest, Laser Focus 24, 40 (1988).
7(a) Halloran, J. W., Hodge, J. D., Chandler, D., Klemptner, L. J., Neal, M., Parish, M., Park, H., Pathare, V., Bakis, G., and Eagles, D., J. Am. Ceram. Soc. 75, 903 (1992); (b) T. Goto and M. Tsujihara, J. Mater. Sci. Lett. 7, 283 (1988); (c) T. Goto and I. Horiba, Jpn. J. Appl. Phys. 26 (12), L1970 (1987); (d) J. C. W. Chien and B. M. Gong, Phys. Rev. B 38 (16), 11.853 (1988); (e) J.C.W. Chien, Polym. Bull. 21, 1 (1989); (f)S.E. Dorris, J.T. Dusek, M.T. Lanagan, J. J. Picciolo, J. P. Singh, J. E. Creech, and R. B. Poeppel, Ceram. Bull. 70, No. 4 (1991).
8(a) Uchikawa, F., Zheng, H., Chen, K. C., and Mackenzie, J. D., in Extended Abstracts No. 14, High-Temperature Superconductors II, edited by II, D.W. Capone, Butler, W.H., Batlogg, A., and Chu, C.W. (Materials Research Society, Pittsburgh, PA, 1988), p. 89; (b) T. Umeda, H. Kozuka, and S. Sakka, Adv. Ceram. Mater. 3 (5), 520 (1988); (c) H. Zhuang, H. Kozuka, and S. Sakka, Jpn. J. Appl. Phys. 28 (10), L1805 (1989); (d) S. Katayama and M. Sekine, J. Mater. Res. 6, 1629 (1991).
9Goto, T. and Sugishita, T., J. Mater. Res. 7, 11 (1992).
10Kumagai, T., Yokota, H., Kawaguchi, K., Kondo, W., and Mizuta, S., Chem. Lett., 1465 (1987).
11Nasu, H., Makida, S., Kato, T., Ibara, Y., Imura, T., and Osaka, Y., Chem. Lett., 2403 (1987).
12Kumagai, T., Kondo, W., Yokota, H., Minamiue, H., and Mizuta, S., Chem. Lett., 551 (1988).
13Rice, C. E., Dover, R.B. van, and Fisanick, G.J., Appl. Phys. Lett. 51 (22), 1842 (1987).
14Hamdi, A. H., Mantese, J. V., Micheli, A. L., Laugal, R. C. O., and Dungan, D. F., Appl. Phys. Lett. 51 (25), 2152 (1987).
15Gross, M.E., Hong, M., Liou, S.H., Gallagher, P.K., and Kwo, J., Appl. Phys. Lett. 52, 160 (1988).
16Gupta, A., Jagannathan, R., Cooper, E. I., Giess, E. A., Landman, J. I., and Hussey, B. W., Appl. Phys. Lett. 52 (24), 2077 (1988).
17Vaslow, D.F., Dieckmann, G.H., Elli, D.D., Ellis, A.B., Holmes, D.S., Lefkow, A., MacGregor, M., Nordman, J. E., Petras, M. F., and Yang, Y., Appl. Phys. Lett. 53 (4), 324 (1988).
18Davison, W.W., Shyu, S.G., and Buchanan, R.C., in High-Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H.L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 289.
19Klee, M., Brand, W., and DeVries, J.W.C., J. Cryst. Growth 91, 346 (1988).
20Klee, M., Stollman, G. M., Stotz, S., and DeVries, J. W. C., Solid State Commun. 67, 613 (1988).
21Shimojima, H., Tsukamoto, K., and Yamagishi, C., Jpn. J. Appl. Phys. 28 (2), L226 (1989).
22Chen, Y.L., Mantese, J.V., Hamdi, A.H., and Micheli, A.L., J. Mater. Res. 4, 1065 (1989).
23(a) O'Bryan, H. M., Gallagher, P. K., Laudise, R. A., Caporaso, A. J., and Sherwood, R.C., J. Am. Ceram. Soc. 72, 1298–1300 (1989); (b) T. B. Lindemer, J. F. Hunley, J. E. Gates, A. L. Sutton, Jr., J. Brynestad, C. R. Hubbard, and P. K. Gallagher, J. Am. Ceram. Soc. 72, 1775–1788 (1989).
24Drew, M. G.B., Edwards, D.A., and Richards, R., Chem, J.C.S.. Commun., 124 (1973).

Superconducting fibers from organometallic precursors: Part III. Pyrolytic processing of precursor fibers

  • Zhi-Fan Zhang (a1), Richard A. Kennish (a1), Blohowiak Kay A. Youngdahl (a2), Martin L. Hoppe (a1) and Richard M. Laine (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed