Skip to main content Accessibility help

Substrate-independent stress–strain behavior of diamond-like carbon thin films by nanoindentation with a spherical tip

  • Naoki Fujisawa (a1), Teng Fei Zhang (a2), Oi Lun Li (a3) and Kwang Ho Kim (a4)


A method for extracting the substrate-independent stress–strain curves of thin films was developed using spherical nanoindentation to investigate the yield behavior of diamond-like carbon (DLC) thin films with Young’s moduli of ∼73 GPa and ∼76 GPa. The resulting stress–strain curves showed that these films commence yielding at ∼13 GPa and ∼14 GPa, respectively. These yield strength values agree with the critical pressure necessary to initiate the transformation of sp 2-bonded carbon into significantly harder sp 3-bonded carbon, indicating that the yielding of the materials is associated with the sp 2-to-sp 3 phase transition. The ability of a DLC film to accommodate a progressively increasing contact stress with strain beyond the yield point while dissipating part of the accumulated strain energy, as evidenced in this work, implies a unique mechanism of the brittle material for passively mitigating contact deformation and fracture in tribological applications.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Grill, A.: Diamond-like carbon: State of the art. Diam. Relat. Mater. 8, 428 (1999).
2. Erdemir, A. and Donnet, C.: Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D: Appl. Phys. 39, R311 (2006).
3. Fujisawa, N., McKenzie, D.R., James, N.L., Woodard, J.C., and Swain, M.V.: Combined influences of mechanical properties and surface roughness on the tribological properties of amorphous carbon coatings. Wear 260, 62 (2006).
4. Pathak, S. and Kalidindi, S.R.: Spherical nanoindentation stress-strain curves. Mater. Sci. Eng. R Rep. 91, 1 (2015).
5. Schwan, J., Ulrich, S., Roth, H., Ehrhardt, H., Silva, S.R.P., Robertson, J., Samlenski, R., and Brenn, R.: Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating. J. Appl. Phys. 79, 1416 (1996).
6. Schwan, J., Ulrich, S., Theel, T., Roth, H., Ehrhardt, H., Becker, P., and Silva, S.R.P.: Stress-induced formation of high-density amorphous carbon thin films. J. Appl. Phys. 82, 6024 (1997).
7. Lu, W. and Komvopoulos, K.: Effect of stress-induced phase transformation on nanomechanical properties of sputtered amorphous carbon films. Appl. Phys. Lett. 82, 2437 (2003).
8. Liu, C., Lin, Y., Zhou, Z., and Li, K.Y.: Dual phase amorphous carbon ceramic achieves theoretical strength limit and large plasticity. Carbon 122, 276 (2017).
9. Tabor, D.: The Hardness of Metals (Clarendon Press, Oxford, U.K., 1951).
10. Field, J.S. and Swain, M.V.: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993).
11. Kalidindi, S.R. and Pathak, S.: Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Mater. 56, 3523 (2008).
12. Hertz, H.: Miscellaneous Papers, Jones, D.E. and Schott, G.A. eds. (Macmillan, London, U.K., 1896); pp. 146183.
13. Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).
14. Fischer-Cripps, A.C.: Nanoindentation, 3rd ed. (Springer, New York, NY, 2011); pp. 810, 24, 43–46, 150–152.
15. Hay, J. and Crawford, B.: Measuring substrate-independent modulus of thin films. J. Mater. Res. 26, 727 (2011).
16. Gao, H., Chiu, C.H., and Lee, J.: Elastic contact versus indentation modeling of multi-layered materials. Int. J. Solid Struct. 29, 2471 (1992).
17. Song, H.: Selected mechanical problems in load and depth sensing indentation testing. Ph.D. thesis, Rice University, Houston, TX, 1999, pp. 5172.
18. Lenardi, C., Baker, M.A., Briois, V., Nobili, L., Piseri, P., and Gissler, W.: Properties of amorphous a-CH(:N) films synthesized by direct ion beam deposition and plasma-assisted chemical vapour deposition. Diam. Relat. Mater. 8, 595 (1999).
19. Fujisawa, N., Zhang, T.F., Lee, B.H., and Kim, K.H.: A robust method for extracting the mechanical properties of thin films with rough surfaces by nanoindentation. J. Mater. Res. 23, 3777 (2016).
20. Cho, S.J., Lee, K.R., Eun, K.Y., Hahn, J.H., and Ko, D.H.: Determination of elastic modulus and Poisson’s ratio of diamond-like carbon films. Thin Solid Films 341, 207 (1999).
21. Saha, R. and Nix, W.D.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 (2002).
22. Stoney, G.G.: The tension of metallic films deposited by electrolysis. Proc. R. Soc. London, Ser. A 82, 172 (1909).
23. Zhou, K., Ke, P., Li, X., Zou, Y., and Wang, A.: Microstructure and electrochemical properties of nitrogen-doped DLC films deposited by PECVD technique. Appl. Surf. Sci. 329, 281 (2015).
24. Qiang, L., Zhang, B., Zhou, Y., and Zhang, J.: Improving the internal stress and wear resistance of DLC film by low content Ti doping. Solid State Sci. 20, 17 (2013).
25. Swadener, J.G., Taljat, B., and Pharr, G.M.: Measurement of residual stress by load and depth sensing indentation with spherical indenters. J. Mater. Res. 16, 2091 (2001).
26. Hu, J.Z., Merkle, L.D., Menoni, C.S., and Spain, I.L.: Crystal data for high-pressure phases of silicon. Phys. Rev. B 34, 4679 (1986).
27. Leyland, A. and Matthrew, A.: On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behavior. Wear 246, 1 (2000).
28. Sakai, M.: Energy principle of the indentation-induced inelastic surface deformation and hardness of brittle materials. Acta Metall. Mater. 41, 1751 (1993).
29. Johnson, K.L.: The correlation of indentation experiments. J. Mech. Phys. Solid. 18, 115 (1970).
30. Atkins, A.G. and Tabor, D.: Plastic indentation in metals with cones. J. Mech. Phys. Solid. 13, 149 (1965).
31. Mesarovic, S.D. and Fleck, N.A.: Spherical indentation of elastic-plastic solids. Proc. R. Soc. London, Ser. A 455, 2707 (1999).
32. Park, Y.J. and Pharr, G.M.: Nanoindentation with spherical indenters: Finite element studies of deformation in the elastic-plastic transition regime. Thin Solid Films 447–448, 246 (2004).
33. Meade, C. and Jeanloz, R.: Frequency-dependent equation of state of fused silica to 10 GPa. Phys. Rev. B 35, 236 (1987).
34. Bundy, F.P., Bassett, W.A., Weathers, M.S., Hemley, R.J., Mao, H.U., and Goncharov, A.F.: The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141 (1996).
35. Guo, W., Zhu, C.Z., Yu, T.X., Woo, C.H., Zhang, B., and Dai, Y.T.: Formation of sp 3 bonding in nanoindented carbon nanotubes and graphite. Phys. Rev. Lett. 93, 245502 (2004).


Related content

Powered by UNSILO

Substrate-independent stress–strain behavior of diamond-like carbon thin films by nanoindentation with a spherical tip

  • Naoki Fujisawa (a1), Teng Fei Zhang (a2), Oi Lun Li (a3) and Kwang Ho Kim (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.