Skip to main content Accessibility help

Study on a new retrogression and re-aging treatment of spray formed Al–Zn–Mg–Cu alloy

  • Rui-ming Su (a1), Ying-dong Qu (a1), Jun-hua You (a1) and Rong-de Li (a1)


Conventional retrogression and re-aging (RRA) treatment could not be put to good use for combination property of Al–Zn–Mg–Cu alloys. The new RRA treatment fitted for spray formed Al–Zn–Mg–Cu alloy was investigated by transmission electron microscope, tensile, and conductivity tests. The results show that the pre-aging treatment with under aging of 120 °C for 16 h is beneficial for the redissolution of matrix precipitates during retrogression treatment. With the retrogression of 200 °C for 8 min, grain boundary precipitates are discrete and the corrosion resistance of the alloy is drastically increased. After re-aging (120 °C for 24 h) the strength of the alloy is increased again. According to the above-mentioned new RRA treatment, the ultimate tensile strength, yield strength, elongation, and conductivity of the alloy are 791 MPa, 736 MPa, 8.5%, and 39.5% IACS respectively, which is higher than that after conventional RRA treatment.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Ma, K., Wen, H., Hu, T., Topping, T.D., Isheim, D., Seidman, D.N., Lavernia, E.J., and Schoenung, J.M.: Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 62, 141155 (2014).
2. Rajamuthamilselvan, M. and Ramanathan, S.: Hot-working behavior of 7075 Al/15% SiCp composites. Mater. Manuf. Processes 27, 260266 (2012).
3. Maranhão, C., Davim, J.P., and Jackson, M.J.: Physical thermomechanical behavior in machining an aluminium alloy (7075-O) using polycrystalline diamond tool. Mater. Manuf. Processes 26, 10341040 (2011).
4. Rajakumar, S., Balasubramanian, V.: Predicting grain size, and tensile strength Of friction stir welded joints of AA7075-T6 aluminium alloy. Mater. Manuf. Processes 27, 7883 (2012).
5. George, S.L. and Knutsen, R.D.: Composition segregation in semi-solid metal cast AA7075 aluminium alloy. J. Mater. Sci. 47, 47164725 (2012).
6. Marlaud, T., Deschamps, A., Bley, F., Lefebvrec, W., and Baroux, B.: Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys. Acta Mater. 58, 248260 (2010).
7. Marlaud, T., Deschamps, A., Bley, F., Lefebvrec, W., and Baroux, B.: Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy. Acta Mater. 58, 48144826 (2010).
8. Hu, T., Ma, K., Topping, T.D., Schoenung, J.M., and Lavernia, E.J.: Precipitation phenomena in an ultrafine-grained Al alloy. Acta Mater. 61, 21632178 (2013).
9. Su, R.M., Qu, Y.D., You, J.H., and Li, R.D.: Effect of pre-aging on stress corrosion cracking of spray-formed 7075 alloy in retrogression and re-aging. J. Mater. Eng. Perform. 24, 43284332 (2015).
10. Jeyakumar, M., Kumar, S., and Gupta, G.S.: Microstructure and properties of the spray-formed and extruded 7075 Al alloy. Mater. Manuf. Processes 25, 777785 (2010).
11. Jeyakumar, M., Kumar, S., and Gupta, G.S.: The influence of processing parameters on characteristics of an aluminum alloy spray deposition. Mater. Manuf. Process. 24(6), 693699 (2009).
12. Shi, J.L., Yan, H.G., Su, B., Chen, J.H., Zhu, S.Q., and Chen, G.: Preparation of a functionally gradient aluminum alloy metal matrix composite using the technique of spray deposition. Mater. Manuf. Process 26, 12361241 (2011).
13. Silva, G., Rivolta, B., Gerosa, R., and Derudi, U.: Study of the SCC behavior of 7075 aluminum alloy after one-step aging at 163 °C. J. Mater. Eng. Perform. 22, 210214 (2013).
14. Ricker, R.E., Lee, E.U., Taylor, R., Lei, C., Pregger, B., and Lipnickas, E.: Chloride ion activity and susceptibility of Al alloys 7075-T6 and 5083-H131 to stress corrosion cracking. Metall. Mater. Trans. A 44, 13531364 (2013).
15. Zhang, G., Chen, Z., Zhu, X., Chen, G., Zhai, J., and Guo, A.: The heat treatment behavior of super-high strength aluminum alloys by spray forming. J. Mater. Sci. Chem. Eng. 1, 5760 (2013).
16. Fooladfar, H., Hasnemi, B., and Younesi, M.: The effect of the surface treating and high-temperature aging on the strength and SCC susceptibility of 7075 aluminum alloy. J. Mater. Eng. Perform. 19, 852859 (2010).
17. Arnold, E.M., Schubbe, J.J., Moran, P.J., and Bayles, R.A.: Comparison of SCC thresholds and environmentally assisted cracking in 7050-T7451 aluminum plate. J. Mater. Eng. Perform. 21, 24802486 (2012).
18. Cina, B.M.: Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking. US Patent No. 3856584, December 24, 1974.
19. Peng, G., Chen, K., Chen, S., and Fang, H.: Influence of repetitious-RRA treatment on the strength and SCC resistance of Al-Zn-Mg-Cu alloy. Mater. Sci. Eng., A 528, 40144018 (2011).
20. Reda, Y., Abdel-Karim, R., and Elmahallawi, I.: Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging. Mater. Sci. Eng., A 485, 468475 (2008).
21. Su, R.M., Qu, Y.D., You, J.H., and Li, R.D.: Study on microstructure, mechanical properties and corrosion behavior of spray formed 7075 alloy. Mater. Today Commun. 4, 109115 (2015).
22. Su, R.M., Qu, Y.D., and Li, R.D.: Effect of aging treatments on the mechanical and corrosive behaviors of spray-formed 7075 alloy. J. Mater. Eng. Perform. 23, 38423848 (2014).
23. Ohnishi, T. and Shiota, H.: Heat treatment to reduce the susceptibility of Al-Zn-Mg-Cu alloy to stress corrosion cracking. J. Jpn. Inst. Light Met. 36, 647656 (1986). (In Japanese).
24. Lin, J. and Kersker, M.M.: Heat treatment of precipitation hardening alloy. US Patent No. 5108520. April 28, 1992.
25. Islam, M.U. and Wallace, W.: Retrogression and reaging response of 7475 aluminium alloy. Mater. Sci. Technol. 10, 386392 (1983).
26. Sha, G. and Cerezo, A.: Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050). Acta Mater. 52, 45034516 (2004).
27. Berg, L.K., Gjønnes, J., Hansen, V., Li, X.Z., Knutson-Wedel, M., Waterloo, G., Schryvers, D., and Wallenberg, L.R.: GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater. 49, 34433451 (2001).


Related content

Powered by UNSILO

Study on a new retrogression and re-aging treatment of spray formed Al–Zn–Mg–Cu alloy

  • Rui-ming Su (a1), Ying-dong Qu (a1), Jun-hua You (a1) and Rong-de Li (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.