Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-20T01:33:46.844Z Has data issue: false hasContentIssue false

Study of quasi-amorphous to nanocrystalline phase transition in thermally evaporated CuInS2 thin films

Published online by Cambridge University Press:  03 March 2014

P. Suchismita Behera
Affiliation:
Department of Physics, School of Physical, Chemical and Applied Sciences, Pondicherry University, Kalapet, Puducherry 605 014
Desapogu Rajesh
Affiliation:
School of Physics, University of Hyderabad, Hyderabad, Andhra Pradesh 500 046
Sreejith Karthikeyan
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis 55455-0170
C.S. Sunandana
Affiliation:
School of Physics, University of Hyderabad, Hyderabad, Andhra Pradesh 500 046
D. Bharathi Mohan*
Affiliation:
Department of Physics, School of Physical, Chemical and Applied Sciences, Pondicherry University, Kalapet, Puducherry 605 014
*
a)Address all correspondence to this author. e-mail: d.bharathimohan@gmail.com
Get access

Abstract

CuInS2 thin films with thickness ranging from 196 to 1000 nm were prepared from a source containing CuInS2 nanocrystals by using thermal evaporation method. Annealed films of CuInS2 show the quasi-amorphous to crystalline phase transition, probed through x-ray diffraction (XRD), UV-visible spectrometer, and Raman spectroscopy. From XRD, the tetragonal distortion (η) is found to be ≈1, confirming the arrangement of an extended double lattice structure of chalcopyrite phase. The surface morphology of quasi-amorphous film exhibits a very smooth surface, whereas crystalline film shows a very rough surface of CuInS2 as observed from atomic force microscopy. Crystallite size and rms roughness increase from 23 to 310 nm and from 1.5 to 36.5, respectively, with increasing film thickness as well as with increasing annealing temperature due to the crystallization process. Micro-Raman study evidencing the presence of a strong Raman A1 mode at 303 cm−1, due to the symmetric vibration of anion sublattice of CuInS2 structure. A fundamental band edge is observed in as-deposited quasi-amorphous CuInS2 films, while bulk energy band absorption and excitonic band transition are observed in crystalline films. A sharp drop in both reflectance and transmittance near the energy band gap region is observed in thick films due to a very strong absorption of crystalline phase of CuInS2.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shell, A.G.: Study of the Shell. Energie im21. Jahrhundert (in German), (Aktuelle Wirtschaftsanalysen, Heft25, Hamburg, 1995), p. 5.Google Scholar
Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R., Wischmann, W., and Powalla, M.: New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovoltaics Res. Appl. 19, 33 (2011).Google Scholar
Ullal, H.S. and Roedern, B.V.: Critical issues for commercialization of thin-film PV technologies. Solid State Technol. 51, 58 (2008).Google Scholar
Kemell, M., Ritala, M., and Leskelä, M.: Thin film deposition methods for CuInSe2 solar cells. Crit. Rev. Solid State Mater. Sci. 30, 1 (2005).Google Scholar
Shah, A., Torres, P., Tscharner, R., Wyrsch, N., and Keppner, H.: photovoltaic technology: The case for thin-film solar cells. Science 285, 692 (1999).Google Scholar
Ahmed, E., Tomlinson, R.D., Pilkington, R.D., Hill, A.E., Ahmed, W., Ali, N., and Hassan, I.U.: Significance of substrate temperature on the properties of flash evaporated CuIn0.75Ga0.25Se2 thin films. Thin Solid Films 335, 54 (1998).CrossRefGoogle Scholar
Romeo, A., Terheggen, M., Abou-Ras, D., Bätzner, D.L., Haug, F.J., Kälin, M., Rudmann, D., and Tiwari, A.N.: Development of thin-film Cu(In, Ga)Se2 and CdTe solar cells. Prog. Photovoltaics Res. Appl. 12, 93 (2004).Google Scholar
Birkmire, R.W.: Compound polycrystalline solar cells: Recent progress and Y2 K perspective. Sol. Energy Mater. Sol. Cells 65, 17 (2001).Google Scholar
Scheer, R., Walter, T., Schock, H.W., Fearheiley, M.L., and Lewerenz, H.J.: CuInS2 based thin film solar cell with 10.2% efficiency. Appl. Phys. Lett. 63, 3294 (1993).Google Scholar
He, Y.B., Kriegseis, W., Meyer, B.K., Polity, A., and Serafin, M.: Heteroepitaxial growth of CuInS2 thin films on sapphire by radio frequency reactive sputtering. Appl. Phys. Lett. 83, 1743 (2003).Google Scholar
Siemer, K., Klaer, J., Luck, L., Bruns, J., Klenk, R., and Bräunig, D.: Efficient CuInS2 solar cells from a rapid thermal process (RTP). Sol. Energy Mater. Sol. Cells 67, 159 (2001).CrossRefGoogle Scholar
Kino, T., Kuzuya, T., Itoh, K., Sumiyama, K., Wakamatsu, T., and Ichidate, M.: Synthesis of chalcopyrite nanoparticles via thermal decomposition of metal-thiolate. Mater. Trans. 49, 435 (2008).Google Scholar
Levcenco, S., Doka, S., Tezlevan, V., Marron, D.F., Kulyuk, L., Schedel-Niedrig, T., Lux-Steiner, M.Ch., and Arushanov, E.: Temperature dependence of the exciton gap in monocrystalline CuGaS2 . Physica B 405, 3547 (2010).Google Scholar
Yang, H.H. and Park, G.C.: A study of the properties of CuInS2 thin film by sulfurization. Trans. Electr. Electron. Mater. 11, 73 (2010).CrossRefGoogle Scholar
Braunger, D., Hariskos, D., Walter, T., and Schock, H.W.: An 11.4% efficient polycrystalline thin film solar cell based on CuInS2 with a Cd-free buffer layer. Sol. Energy Mater. Sol. Cells 40, 97 (1996).Google Scholar
Lee, S.Y. and Park, B.O.: CuInS2 thin films deposited by sol–gel spin-coating method. Thin Solid Films 516, 3862 (2008).Google Scholar
Rabeh, M.B. and Kanzari, M.: Optical constants of Zn-doped CuInS2 thin films. Thin Solid Films 519, 7288 (2011).CrossRefGoogle Scholar
Zhang, Y., He, W., and Jia, H.: Hydrothermal fabrication of chalcopyrite-type CuInS2 film and their optical properties. Phys. Scr. 88, 015705 (2013).Google Scholar
Tsai, C.H., Ting, J.M., and Wang, R.R.: Ex situ structural characterization during the formation of CuInS2 thin films. Acta Mater. 59, 349 (2011).Google Scholar
Gurinovich, L.I., Gurin, V.S., Ivanov, V.A., Bodnar, I.V., Molochko, A.P., and Solovei, N.P.: Crystal structure and optical properties of CuInS2 nanocrystals in a glass matrix. Phys. Status Solidi B 208, 533 (1998).Google Scholar
Scheer, R., Diesner, K., and Lewerenz, H.J.: Experiments on the microstructure of evaporated CuInS2 thin films. Thin Solid Films 268, 130 (1995).CrossRefGoogle Scholar
Malyarevich, A.M., Yumashev, K.V., Posnov, N.N., Mikhailov, V.P., Gurin, V.S., Prokopenko, V.B., Alexeenko, A.A., and Melnichenko, I.M.: Nonlinear optical properties of CuxS and CuInS2 nanoparticles in sol–gel glasses. J. Appl. Phys. 87, 212 (2000).Google Scholar
Gurinovich, L.I., Gurin, V.S., Ivanov, V.A., Molochko, A.P., and Solovei, N.P.: Optical properties of CuInS2 nanoparticles in the region of the fundamental absorption edge. J. Appl. Spectrosc. 63, 401 (1998).Google Scholar
Tsai, C.H., Ting, J.M., and Ho, W.H.: Microstructural analysis and phase transformation of CuInS2 thin films during sulfurization. Cryst. Eng. Commun. 13(17), 5447 (2011).Google Scholar
Qi, Y., Liu, Q., Tang, K., Liang, Z., Ren, Z., and Liu, X.: Synthesis and characterization of nanostructured wurtzite CuInS2: A new cation disordered polymorph of CuInS2 . J. Phys. Chem. C 113, 3939 (2009).Google Scholar
Rajesh, D. and Sunandana, C.S.: Briefly brominated AgI films: XRD, FESEM and optical properties of surface modification. Appl. Surf. Sci. 259, 276, 2012.CrossRefGoogle Scholar
Karthikeyan, S., Hill, A.E., Pilkington, R.D., Cowpe, J.S., Hisek, J., and Bagnall, D.M.: Single step deposition method for nearly stoichiometric CuInSe2 thin films. Thin Solid Films 519, 3107 (2011).Google Scholar
Hwang, H.L., Cheng, C.L., Liu, L.M., Liu, Y.C., and Sun, C.Y.: Growth and properties of sputter-deposited CuInS2 thin films. Thin Solid Films 67, 83 (1980).Google Scholar
Kodigala, S.R.: Cu(In1-xGax)Se2 Based Thin Film Solar Cells, Vol. 35 (Academic Press, Elsevier, 2010), p. 25.Google Scholar
Shim, E.S., Kang, H.S., Pang, S.S., Kang, J.S., Yun, I., and Lee, S.Y.: Annealing effect on the structural and optical properties of ZnO thin film on InP. Mater. Sci. Eng., B 102, 366 (2003).Google Scholar
Garcia, J.A., Ruzafa, J.M., Rodriguez, A.P., Rodriguez, A.R., Morante, J.R., and Scheer, R.: Micro Raman scattering from polycrystalline CuInS2 films: Structural analysis. Thin Solid Films 361, 208 (2000).Google Scholar
Koschel, W.H. and Bettni, M.: Zone-centered phonons in AIBIIIS2 chalcopyrites. Phys. Status Solidi B 72, 729 (1975).Google Scholar
Ohrendorf, F.W. and Haeuseler, H.: Lattice dynamics of chalcopyrite type compounds. Part I. Vibrational frequencies. Cryst. Res. Technol. 34, 339 (1999).3.0.CO;2-E>CrossRefGoogle Scholar
Saad, M., Bleyhl, S., Ohashi, T., Hashimoto, Y., Ito, K., Mertesacker, B., Jäger-Waldau, A., Woletz, W., and Lux-Steiner, M.C.: Radiant recombination in ZnO/CdS/CuIn(Ga)S2 solar cells. Edited by Schmid, J.. In 2nd World Conference on Photovoltaic Solar Energy Conversion: proceedings of the international conference, Vienna, Austria, 6 - 10 July 1998, Vol. 1. Luxembourg: European Commission, 1998 (EUR 18656 EN), p. 11491152.Google Scholar
Gorska, M., Beaulieu, R., Loferski, J.J., and Roessler, B.: CuInS2 films prepared by spray pyrolysis. Sol. Energy Mater. 1, 313 (1979).Google Scholar
Zhong, H., Zhou, Y., Ye, M., He, Y., Ye, J., He, C., Yang, C., and Li, Y.: Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem. Mater. 20, 6434 (2008).Google Scholar
Sun, L.Y., Kazmerski, L.L., and Clark, A.H.: Absorption coefficient measurements for vacuum‐deposited Cu‐ternary thin films. J. Vac. Sci. Technol. 15, 265 (1978).Google Scholar
Park, G.C., Chung, H.D., Kim, C.D., Park, H.R., Jeong, W.J., Kim, J.U., Gu, H.B., and Lee, K.S.: Photovoltaic characteristics of CuInS2CdS solar cell by electron beam evaporation. Sol. Energy Mater. Sol. Cells 49, 365 (1997).Google Scholar
Todorov, T., Cordoncillo, E., Sanchez-Royo, J.F., Carda, J., and Escribano, P.: CuInS2 films for photovoltaic applications deposited by a low cost method. Chem. Mater. 18, 3145 (2006).CrossRefGoogle Scholar
Castro, S.L., Bailey, S.G., Raffaelle, R.P., Banger, K.K., and Hepp, A.F.: Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors. Chem. Mater. 15, 3142 (2003).Google Scholar