Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-02T00:29:27.506Z Has data issue: false hasContentIssue false

Study of microstructures of Ag-sheathed (BiPbSrCaCuO) multifilamentary tapes in various stages of processing

Published online by Cambridge University Press:  31 January 2011

R. K. Wang
Affiliation:
General Institute of Non-Ferrous Metals, Beijing 100088, China
X. H. Wang
Affiliation:
General Institute of Non-Ferrous Metals, Beijing 100088, China
R. Bhasale
Affiliation:
Centre for Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522, Australia
H. K. Liu
Affiliation:
Centre for Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522, Australia
S. X. Dou
Affiliation:
Centre for Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522, Australia
Get access

Extract

Microstructures of 27-filament (Bi, Pb)2Sr2Ca2Cu3O10+x (BPSCCO 2223) tape at various stages of repetitive rolling and sintering have been investigated using TEM and SEM. It was found that the dislocation density increases with increasing sintering time with the maximum dislocation density of 1012/cm2 achieved for tapes sintered for 220 h. The interface between Ag-sheath and oxide core was observed to be wavelike. Small irregular 2223 colonies and cracks in the oxide cores were often observed near the Ag-sheath/oxide core interface. Repetitively rolled and sintered specimen with a total sintering time of 220 h was observed to have optimum phase purity of 2223 phase. Prolonged sintering results in recrystallization of the 2223 grains, degrading the texture of the oxide core.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lelovic, M., Krishnara, P., Eror, N.G., Iyer, A.N., and Balachandran, U., Supercond. Sci. Technol. 9, 201 (1996).CrossRefGoogle Scholar
2.Li, Q., Brodersen, K., Hjuler, H.A., and Freltoft, T., Physica C 217, 360 (1993).CrossRefGoogle Scholar
3.Dou, S.X., Liu, H.K., Ionescu, M., Wang, W.G., Babic, E., and Kusevic, I., Physica B 216, 255 (1995).CrossRefGoogle Scholar
4.Grasso, G., Jeremie, A., and Flukiger, R., Supercond. Sci. Technol. 8, 827 (1995).CrossRefGoogle Scholar
5.Eibl, O., Wilhelm, M., Kummeth, P., and Nemuller, H.W., Proc. 7th Int. Workshop on Critical Currents in Superconductors, edited by Weber, H.W. (Austria, 1994), pp. 2734.Google Scholar
6.Liu, H.K., Guo, Y.C., and Dou, S.X., Proc. Beijing It. Conf. On High Temperature Superconductivity (BHTSC'92), edited by Gan, Z. Z., Xie, S. S., and Zhao, Z.X., p. 3443.Google Scholar
7.Feng, Y., Hantanen, K. E., High, Y. E., Larbalestier, D.C., Ray, R., Hellstrom, E. E., and Babcock, S. E., Physica C 192, 293 (1992).CrossRefGoogle Scholar
8.Liu, H.K., Wang, R.K., and Dou, S.X., Physica C 229, 29 (1994).CrossRefGoogle Scholar
9.Wang, R.K., Liu, H.K., and Dou, S.X., Supercond. Sci. Technol. 8, 168 (1995).CrossRefGoogle Scholar
10.Guo, Y., Wu, C. T., Shi, Y., Merkie, K. L., and Goretta, K. C., Appl. Supercond. 1, 297 (1993).Google Scholar
11.Dou, S.X. and Liu, H.K., Supercond. Sci. Technol. 6, 297 (1993).CrossRefGoogle Scholar
12.Sato, K., Hikata, T., Mukai, H., Ueyama, M., Shibuta, N., Sato, T., Masuda, T., Nagata, M., Iwata, K., and Mitsui, T., IEEE Trans. Magn. 27, 1231 (1991).CrossRefGoogle Scholar
13.Zeimetz, B., Pan, A., and Dou, S.X., Physica C 250, 170 (1995).CrossRefGoogle Scholar
14.Yamada, Y., Oberst, B., and Flukiger, R., Supercond. Sci. Technol. 4 165 (1991).CrossRefGoogle Scholar