Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T01:25:27.342Z Has data issue: false hasContentIssue false

A study of micropyretic reactions in the Mo–Si–Al ternary system

Published online by Cambridge University Press:  31 January 2011

Ming Fu
Affiliation:
Micropyretics Heaters International Inc. (MHI, Inc.), 1776 Mentor Avenue, Cincinnati, Ohio 45212
Get access

Abstract

Micropyretic synthesis technique employs self-sustaining exothermic (combustion) reactions for the preparation of various ceramic, intermetallic, and composite materials. In the present work, the combustion reactions of Mo and Si with Al additions have been systematically studied. The atomic mixtures of the reactant powders are chosen to be Mo + (2 − x)Si + xAl with x = 0−0.4. In comparison with the Mo + 2Si reaction which leads to the formation of MoSi2, the substitution of Al for Si decreases the sample ignition temperature, but increases the intensity of the combustion reactions. In addition, the substitution of Al for Si results in the formation of a ternary intermetallic phase, called molybdenum alumino-silicide Mo(Si, Al)2, in the synthesized product. When the content of Al in the reactant mixtures reaches 0.4, nearly single phase Mo(Si, Al)2 is obtained and no MoSi2 is detected in the reaction product. These influences are analyzed by using x-ray diffraction (XRD), scanning electron microscopy (SEM), and differential thermal analysis (DTA). The effect of Al additions on the reaction mechanism is also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Munir, Z. A. and Anselmi-Tamburini, U., Mater. Sci. Reports 3, 277 (1989).CrossRefGoogle Scholar
2.Merzhanov, A. G., in Combustion and Plasma Synthesis of High-Temperature Materials, edited by Munir, Z. A. and Holt, J. B. (VCH Publishers, New York, 1990), p. 1Google Scholar
3.Yi, H. C. and Moore, J. J., J. Mater. Sci. 25, 1159 (1990).CrossRefGoogle Scholar
4.Fu, M. and Sekhar, J. A., Key Engineering Materials 108–110, 19 (1995).CrossRefGoogle Scholar
5.Bose, A., Moore, B., German, R. M., and Stoloff, N. S., JOM 40 (9), 14 (1988).CrossRefGoogle Scholar
6.Li, H. P., Bhaduri, S., and Sekhar, J. A., Metall. Trans. A 23A, 251 (1992).CrossRefGoogle Scholar
7.Li, H. P. and Sekhar, J A., J. Mater. Res. 8, 2515 (1993).CrossRefGoogle Scholar
8.Lakshmikantha, M. G., Bhattacharya, A., and Sekhar, J. A., Metall. Trans. A 23A, 23 (1992).CrossRefGoogle Scholar
9.Lakshmikantha, M. G. and Sekhar, J. A., Metall. Trans. A 24A, 617 (1993).CrossRefGoogle Scholar
10.Lakshmikantha, M. G. and Sekhar, J. A., J. Am. Ceram. Soc. 77 (1), 202 (1994).CrossRefGoogle Scholar
11.Ho, C. T. and Sekhar, J. A., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 1057.Google Scholar
12.Sekhar, J. A., Bhattacharya, A. K., and Li, H. P., U.S. Patent 5 110 688 (1992).Google Scholar
13.Li, H. P. and Sekhar, J. A., in Advanced Synthesis of Engineered Structural Materials, edited by Moore, J. J., Lavernia, E. J., and Froes, F. H. (ASM INTERNATIONAL, Materials Park, OH, 1993), p. 25.Google Scholar
14.Li, H. P. and Sekhar, J. A., Mater. Sci. Eng. A160, 221 (1993).CrossRefGoogle Scholar
15.Sekhar, J. A., Bhaduri, S., Li, H. P., and Canarslan, N. S., U.S. Patent 5 188 678 (1993).Google Scholar
16.Subrahmanyam, J. and Rao, R. Mohan, Mater. Sci. Eng. A183, 205 (1994).CrossRefGoogle Scholar
17.Sarkisyan, A. R., Dolukhanyan, S. K., Borovinskaya, I. P., and Merzhanov, A. G., Combust. Explos. Shock Waves 14, 310 (1978).CrossRefGoogle Scholar
18.Zhang, S. and Munir, Z. A., J. Mater. Sci. 26, 3685 (1991).CrossRefGoogle Scholar
19.Deevi, S. C., J. Mater. Sci. 26, 3343 (1991).CrossRefGoogle Scholar
20.Bloshenko, V. N., Bokii, V. A., and Borovinskaya, I. P., Combust. Explos. Shock Waves 21, 202 (1985).CrossRefGoogle Scholar
21.Kayuk, V. G., Kuzenkova, M. A., Dolukhanyan, S. K., and Sarkisyan, A. R., Sov. Powder Metall. Met. Ceram. 188, 588 (1978).CrossRefGoogle Scholar
22. MHI Element Handbook (1996), Version 6.Google Scholar
23.Hausner, H. H., Coatings of High-Temperature Materials (Plenum Press, New York, 1966).CrossRefGoogle Scholar
24.Murarka, S. P., Silicides for VLSI Applications (Academic Press, New York, 1983).Google Scholar
25.Vasudevan, A. K. and Petrovic, J. J., Mater. Sci Eng. A155, 1 (1992).CrossRefGoogle Scholar
26.Singh, M. and Bose, A., in Processing and Fabrication of Advanced Materials for High Temperature Applications, edited by Ravi, V. A. and Srivatsan, T. S. (TMS, Warrendale, PA, 1992), p. 95.Google Scholar
27.Petrovic, J. J. and Vasudevan, A. K., in Intermetallic Matrix Composites II, edited by Miracle, D. B., Anton, D. L., and Graves, J. A. (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1991), p. 229.Google Scholar
28.Silva, A. Costa e and Kaufman, M. J., Scripta Metall. Mater. 29, 1141 (1993).CrossRefGoogle Scholar
29.Frankwicz, P. S. and Perepezko, J. H., in High TemperatureOrdered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 169.Google Scholar
30.Umakoshi, Y., Hirano, T., Sakagami, T., and Yamane, T., in High Temperature Aluminides and Intermetallics, edited by Hwang, S. H., Liu, C. T., Pope, D. P., and Stiegler, J. O. (TMS-AIME, Warrendale, PA, 1990), p. 111.Google Scholar
31.Petrovic, J. J. and Honnell, R. E., Ceram. Eng. Sci. Proc. 11 (78), 734 (1990).Google Scholar
32.Shah, D. M., Berczick, D., Anton, D. L., and Hecht, R., Mater. Sci. Eng. A155, 45 (1992).CrossRefGoogle Scholar
33.Petzow, G. and Effenberg, G., Ternary Alloys—A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams (VCH Publishers, New York, 1993), Vol. 7.Google Scholar
34.Rice, R. W. and McDonough, W. J., J. Am. Ceram. Soc. 68 (5), C-122 (1985).CrossRefGoogle Scholar
35.Gokhale, A. B. and Abbaschian, G. J., J. Phase Equilibria 12 (4), 493 (1991).CrossRefGoogle Scholar
36.Cullity, B. D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing Co., Reading, MA, 1978).Google Scholar
37.Samsonov, G. V. and Vinitskii, I. M., Handbook of Refractory Compounds (IFI/PLENUM, New York, 1980).CrossRefGoogle Scholar
38.Massalski, T. B., Okamoto, H., Subramania, P. R., and Kacprzak, L., Binary Alloy Phase Diagrams, 2nd ed. (ASM INTERNATIONAL, Materials Park, OH, 1990), Vol. 1.Google Scholar
39.Deevi, S. C., Mater. Sci. Eng. A149, 241 (1992).Google Scholar
40.Hardwick, D. A., Martin, P. L., and Moores, R. J., Scripta Metall. Mater. 27, 391 (1992).CrossRefGoogle Scholar
41.Fu, Z. Y., Yuan, R. Z., Munir, Z. A., and Yang, Z. L., Int. J. Self-Propagating High-Temperature Synthesis 1 (1), 119 (1992).Google Scholar
42.Gotman, I., Koczak, M. J., and Shtessel, E., Mater. Sci. Eng. A187, 189 (1994).CrossRefGoogle Scholar
43.Merzhanov, A. G., Combustion and Flame 13, 143 (1969).CrossRefGoogle Scholar
44.Brewer, L., Lamoreaux, R. H., Ferro, R., Marazza, R., and Girgis, K., Molybdenum: Physico-Chemical Properties of Its Compounds and Alloys, Atomic Energy Review (International Atomic Energy Agency, Vienna, 1989), Special Issues No. 7.Google Scholar
45.Ivanov, V. E., Nechiporenko, E. P., Zmii, V. I., and Kirvoruchko, V. M., in Diffusion Cladding of Metals, edited by Samsonov, G. V. (Consultants Bureau, Plenum Publishing Co., New York, 1967), p. 29.CrossRefGoogle Scholar