Skip to main content Accessibility help
×
Home

Study of bitumen crystallization by temperature-modulated differential scanning calorimetry and rheology

  • Jesús López-Paz (a1), Carlos Gracia-Fernández (a2), Silvia Gómez-Barreiro (a3), Jorge López-Beceiro (a4), Javier Nebreda (a5) and Ramón Artiaga (a6)...

Abstract

Asphalt bitumens are complex colloidal systems of high viscosity and complex behavior, which are mainly used for making asphalt concrete for road surfaces. Thermal and rheological characterizations are needed to understand their complex behavior, particularly at the processing stage. Prediction of properties at short and long observation times is usually performed through time-temperature superposition (TTS) models, which make use of some calculated shift factors. The influence of crystallization-like transformation processes on the validity of these shift factors is investigated here by temperature-modulated differential scanning calorimetry (TMDSC). Four asphalt emulsions are considered in this work, each one with a specific transformation behavior. The structure-properties relationships are explained on the basis of the transformation profiles and rheological data.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: ramon.artiaga@udc.es

References

Hide All
1.Gonzalez, O., Pena, J., Munoz, M., Santamaria, A., Perez-Lepe, A., Martinez-Boza, F., and Gallegos, C.: Rheological techniques as a tool to analyze polymer-bitumen interactions: Bitumen modified with polyethylene and polyethylene-based blends. Energy Fuels 16(5), 1256 (2002).
2.Gonzalez, O., Munoz, M., Santamaria, A., Garcia-Morales, M., Navarro, F., and Partal, P.: Rheology and stability of bitumen/EVA blends. Eur. Polym. J. 40(10), 2365 (2004).
3.Lu, X. and Isacsson, U.: Rheological characterization of styrene-butadiene-styrene copolymer-modified bitumens. Constr. Build. Mater. 11(1), 23 (1997).
4.Kim, H., Lee, S., and Amirkhanian, S.N.: Effects of warm mix asphalt additives on performance properties of polymer-modified asphalt binders. Can. J. Civ. Eng. 37(1), 17 (2010).
5.Behbahani, H., Ziari, H., Fazaeli, H., and Rahmani, J.: Comparison of performance of asphalt mixtures containing polymer modifiers. J. Test. Eval. 37(5), 431 (2009).
6.Kim, S., Sholar, G.A., Byron, T., and Kim, J.: Performance of polymer-modified asphalt mixture with reclaimed asphalt pavement. Transp. Res. Rec. 2126, 109 (2009).
7.Yu, T., Li, C., and Wu, S.: Performance of polymer-modified asphalt bridge expansion joints in low-temperature regions. J. Perform. Constr. Facil 23(4), 227 (2009).
8.Fang, C., Li, T., Zhang, Z., and Jing, D.: Modification of asphalt by packaging waste-polyethylene. Polymer Composites 29(5), 500 (2008).
9.Tasdemir, Y. and Agar, E.: Investigation of the low-temperature performances of polymer and fiber modified asphalt mixtures RID A-6382-2009. Indian J. Eng. Mater. Sci. 14(2), 151 (2007).
10.Tayfur, S., Ozen, H., and Aksoy, A.: Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Constr. Build. Mater. 21(2), 328 (2007).
11.Von Quintus, H.L., Mallela, J., and Buncher, M.: Quantification of effect of polymer-modified asphalt on flexible pavement performance. Transp. Res. Rec. 2001, 141 (2007).
12.Stuart, K., Mogawer, W., and Youtcheff, J.: Performance of modified asphalt binders with identical high-temperature performance grades but varied polymer chemistries. Bituminous Binders 1875, 33 (2004).
13.Airey, G.: Styrene butadiene styrene polymer modification of road bitumens. J. Mater. Sci. 39(3), 951 (2004).
14.Sengoz, B. and Isikyakar, G.: Analysis of styrene-butadiene-styrene polymer-modified bitumen using fluorescent microscopy and conventional test methods. J. Hazard. Mater. 150(2), 424 (2008).
15.Ait-Kadi, A., Brahimi, B., and Bousmina, M.: Polymer blends for enhanced asphalt binders. Polym. Eng. Sci. 36(12), 1724 (1996).
16.Isacsson, U. and Lu, X.: Characterization of bitumens modified with SEBS, EVA and EBA polymers. J. Mater. Sci. 34(15), 3737 (1999).
17.Oliver, J.W.H.: Changes in the chemical composition of Australian bitumens. Road Mater. Pavement Des. 10(3), 569 (2009).
18.Speight, J.G.: The Chemistry and Technology of Petroleum, 4th ed. (CRC Press/Taylor & Francis, Boca Raton, 2007).
19.Kolbanov, A. and Rudenski, A.: Influence of solid paraffins on structural and rheological properties of bitumens. Colloid J. 30(4), 390 (1968).
20.Planche, J., Martin, D., Rey, C., Champion, L., and Gerard, J.: Evaluation of the Physical Hardening of Bitumens in the Cold: Another Method for Measuring their Paraffin Content (A A Balkema, BR Rotterdam, Netherlands, 1997).
21.Lesueur, D., Gerard, J., Claudy, P., Letoffe, J., Planche, J., and Martin, D.: A structure-related model to describe asphalt linear viscoelasticity. J. Rheol. 40(5), 813 (1996).
22.Reading, M., Elliott, D., and Hill, V.: A new approach to the calorimetric investigation of physical and chemical-transitions. J. Therm. Anal. 40(3), 949 (1993).
23.Wunderlich, B., Jin, Y., and Boller, A.: Mathematical description of differential scanning calorimetry based on periodic temperature modulation. Thermochim. Acta 238, 277 (1994).
24.Garcia-Morales, M., Partal, P., Navarro, F., and Gallegos, C.: Effect of waste polymer addition on the rheology of modified bitumen. Fuel 85(7–8), 936 (2006).
25.Claudy, P., Letoffe, J., King, G.N., and Planche, J.: Characterization of road bitumen by differential scanning calorimetry (DSC). Thermo optical analysis (TOA). Correlation between physical properties and DSC results. Correlation entre proprietes physiques et resultats ACD. Bulletin de Liaison des Laboratoires des Ponts et Chaussees (177), 45 (1992).
26.Claudy, P., Letoffe, J.M., King, G.N., and Plancke, J.P.: Characterization asphalts cements by thermomicroscopy differential scanning calorimetry: Correlation classic physical properties. Fuel Sci. Technol. Int. 10(4–6), 735 (1992).
27.Lesueur, D.: The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid Interface Sci. 145(1–2), 42 (2009).
28.Leaderman, H.: Elastic and Creep Properties of Filamentous Materials (Textile Foundation, Washington District of Columbia, 1943).
29.Ferry, J.D.: Viscoelastic Properties of Polymers (Wiley, New York, NY, 1980).
30.Alwis, K.G.N.C. and Burgoyne, C.J.: Time-temperature superposition determines stress-rupture aramid fibers. Appl. Compos. Mater. 13(4), 249 (2006).
31.Arridge, R.G.: Mechanics of Polymers (Clarendon Press, Oxford, 1975).
32.Chevali, V.S., Dean, D.R., and Janowski, G.M.: Flexural creep behavior of discontinuous thermoplastic composites: Nonlinear viscoelastic modeling and time–temperature–stress superposition. Composites Part A 40(6–7), 870 (2009).
33.Menczel, J.D. and Prime, R.B.: Thermal Analysis of Polymers: Fundamentals and Applications (John Wiley, Hoboken, NJ, 2009).
34.Gurp, V.M. and Palmen, J.: Time-temperature superposition of polymer blends. Rheology Bulletin 67(1), 5 (1998).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed