Skip to main content Accessibility help

Structure and gas permeation of nanoporous carbon membranes based on RF resin/F-127 with variable catalysts

  • Bing Zhang (a1), Xiaolong Dang (a1), Yonghong Wu (a1), Hongjing Liu (a1), Tonghua Wang (a2) and Jieshan Qiu (a2)...


Nanoporous carbon membranes (NCMs) were fabricated by the blends of resorcinol–formaldehyde (RF) resin and Pluronic F-127 through the processes of assembly, membrane-casting, solidification, and pyrolysis. The effect of the catalyst type (i.e., NaOH and Na2CO3) on the structure and property of precursors and their derived NCMs was investigated. The as-obtained precursors and NCMs were characterized by thermogravimetry, differential scanning calorimetry, x-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, elemental analysis, nitrogen adsorption, and gas permeation techniques. The results have shown that defect-free NCMs can be easily procured by the NaOH and Na2CO3 catalysts. In contrast, the precursor made from the Na2CO3 catalyst exhibits higher char yield than that from NaOH after pyrolysis. NaOH-based NCMs are beneficial for the separation of H2/N2 and CO2/N2 gas pairs. Na2CO3-based NCMs are more favorable for the separation of O2/N2 with an ideal selectivity of 6.29 and an O2 permeability of 3.27 Barrer.


Corresponding author

a) Address all correspondence to this author. e-mail:,


Hide All
1. Ismail, A.F., Rana, D., Matsuura, T., and Foley, H.C.: Carbon-based Membranes for Separation Processes (Springer Science+Business Media, LLC, New York, USA, 2011), p. 302.
2. Gogotsi, Y., Nikitin, A., Ye, H., Zhou, W., Fischer, J.E., Yi, B., Foley, H.C., and Barsoum, M.W.: Nanoporous carbide-derived carbon with tunable pore size. Nat. Mater. 2, 591 (2003).
3. Che, G., Lakshmi, B.B., Fisher, E.R., and Martin, C.R.: Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393, 346 (1998).
4. Siegal, M.P., Overmyer, D.L., Kottenstette, R.J., Tallant, D.R., and Yelton, W.G.: Nanoporous-carbon films for microsensor preconcentrators. Appl. Phys. Lett. 80, 3940 (2002).
5. Jiang, J., Klauda, J.B., and Sandler, S.I.: Monte Carlo simulation of O2 and N2 adsorption in nanoporous carbon (C168 Schwarzite). Langmuir 19, 3512 (2003).
6. Paul, D.R.: Creating new types of carbon-based membranes. Science 335, 413 (2012).
7. Buonomenna, M.G., Yave, W., and Golemme, G.: Some approaches for high performance polymer based membranes for gas separation: Block copolymers, carbon molecular sieves and mixed matrix membranes. RSC Adv. 2, 10745 (2012).
8. Tin, P.S., Xiao, Y., and Chung, T-S.: Polyimide-carbonized membranes for gas separation: Structural, composition, and morphological control of precursors. Sep. Purifi. Rev. 35, 285 (2006).
9. Salleh, W.N.W., Ismail, A.F., Matsuura, T., and Abdullah, M.S.: Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A review. Sep. Purifi. Rev. 40, 261 (2011).
10. Katsaros, F.K., Steriotis, Th.A., Romanos, G.E., Konstantakou, M., Stubos, A.K., and Kanellopoulos, N.K.: Preparation and characterisation of gas selective microporous carbon membranes. Microporous Mesoporous Mater. 99, 181 (2007).
11. Fuertes, A.B. and Menendez, I.: Separation of hydrocarbon gas mixtures using phenolic resin-based carbon membranes. Sep. Purif. Technol. 28, 29 (2002).
12. Dong, Y-R., Nakao, M., Nishiyama, N., Egashira, Y., and Ueyama, K.: Gas permeation and pervaporation of water/alcohols through the microporous carbon membranes prepared from resorcinol/formaldehyde/quaternary ammonium compounds. Sep. Purif. Technol. 73, 2 (2010).
13. Salleh, W.N.W. and Ismail, A.F.: Effect of stabilization condition on PEI/PVP-based carbon hollow fiber membranes properties. Sep. Sci. Technol. 48, 1030 (2013).
14. Yin, X., Chu, N., Yang, J., Wang, J., and Li, Z.: Thin zeolite T/carbon composite membranes supported on the porous alumina tubes for CO2 separation. Int. J. Greenhouse Gas Control 15, 55 (2013).
15. Zhang, B., Shi, Y., Wu, Y., Wang, T., and Qiu, J.: Towards the preparation of ordered mesoporous carbon/carbon composite membranes for gas separation. Sep. Sci. Technol. 49, 171 (2014).
16. Lee, H.J., Suda, H., Haraya, K., and Moon, S.H.: Gas permeation properties of carbon molecular sieving membranes derived from the polymer blend of polyphenylene oxide (PPO)/polyvinylpyrrolidone (PVP). J. Membr. Sci. 296, 139 (2007).
17. Rao, P.S., Wey, M.Y., Tseng, H.H., Kumar, I.A., and Weng, T.H.: A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application. Microporous Mesoporous Mater. 113, 499 (2008).
18. Kim, Y.K., Park, H.B., and Lee, Y.M.: Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: Effect of the molecular weight of polyvinylpyrrolidone. J. Membr. Sci. 251, 159 (2005).
19. Zhang, X., Hu, H., Zhu, Y., and Zhu, S.: Carbon molecular sieve membranes derived from phenol formaldehyde novolac resin blended with poly(ethylene glycol). J. Membr. Sci. 289, 86 (2007).
20. Hosseini, S.S. and Chung, T.S.: Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. J. Membr. Sci. 328, 174 (2009).
21. Liang, C., Hong, K., Guiochon, G.A., Mays, J.W., and Dai, S.: Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew. Chem., Int. Ed. 43, 5785 (2004).
22. Song, L., Feng, D., Fredin, N.J., Yager, K.G., Jones, R.L., Wu, Q., Zhao, D., and Vogt, B.D.: Challenges in the fabrication of mesoporous carbon films with ordered cylindrical pores via phenolic oligomer self-assembly with triblock copolymers. ACS Nano 4, 189 (2010).
23. Kataoka, S., Yamamoto, T., Inagi, Y., Endo, A., Nakaiwa, M., and Ohmori, T.: Synthesis of ordered mesoporous carbon thin films at various temperatures in vapor infiltration method. Carbon 46, 1358 (2008).
24. Tanaka, S., Nakatani, N., Doi, A., and Miyake, Y.: Preparation of ordered mesoporous carbon membranes by a soft-templating method. Carbon 49, 3184 (2011).
25. Zhang, B., Shi, Y., Wu, Y., Wang, T., and Qiu, J.: Preparation and characterization of supported ordered nanoporous carbon membranes for gas separation. J. Appl. Polym. Sci. 131, 2136 (2014).
26. Liu, D., Lei, J-H., Guo, L-P., and Deng, K-J.: Simple hydrothermal synthesis of ordered mesoporous carbons from resorcinol and hexamine. Carbon 49, 2113 (2011).
27. ElKhatat, A.M. and Al-Muhtaseb, S.A.: Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 23, 2887 (2011).
28. Zhang, B., Wang, T., Zhang, S., Qiu, J., and Jian, X.: Preparation and characterization of carbon membranes made from poly(phthalazinone ether sulfone ketone). Carbon 44, 2764 (2006).
29. Benk, A., Talu, M., and Coban, A.: Phenolic resin binder for the production of metallurgical quality briquettes from coke breeze: Part II the effect of the type of the basic catalyst used in the resol production on the tensile strength of the formed coke briquettes. Fuel Process. Technol. 89, 38 (2008).
30. Job, N., Panariello, F., Marien, J., Crine, M., Pirard, J., and Léonard, A.: Synthesis optimization of organic xerogels produced from convective air-drying of resorcinol–formaldehyde gels. J. Non-Cryst. Solids 352, 24 (2006).
31. Lin, C. and Ritter, J.A.: Effect of synthesis pH on the structure of carbon xerogels. Carbon 35, 1271 (1997).
32. Wei, H-Z., Wang, C-G., Wang, H-Q., and Bai, Y-J.: Synthesis of high crosslinking density phenolic resin. J. Adv. Mater. 38, 54 (2006).
33. Holopainen, T., Alvila, L., Rainio, J., and Pakkanen, T.T.: Phenol-formaldehyde resol resins studied by 13C-NMR spectroscopy, gel permeation chromatography, and differential scanning calorimetry. J. Appl. Polym. Sci. 66, 1183 (1997).
34. Munoz, J-C., Kua, H., Cardona, F., and Rogers, D.: Effects of catalysts and post-curing conditions in the polymer network of epoxy and phenolic resins: Preliminary results. J. Mater. Process. Technol. 202, 486 (2008).
35. Christiansen, A.W.: Resorcinol–formaldehyde reactions in dilute solution observed by carbon-13 NMR spectroscopy. J. Appl. Polym. Sci. 75, 1760 (2000).
36. Xue, C., Tu, B., and Zhao, D.: Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly. Nano Res. 2, 242 (2009).
37. Lu, A-H., Spliethoff, B., and Schüth, F.: Aqueous synthesis of ordered mesoporous carbon via self-assembly catalyzed by amino acid. Chem. Mater. 20, 5314 (2008).
38. Tanaka, S., Doi, A., Nakatani, N., Katayama, Y., and Miyake, Y.: Synthesis of ordered mesoporous carbon films, powders, and fibers by direct triblock-copolymer-templating method using an ethanol/water system. Carbon 47, 2688 (2009).
39. Zhou, W., Yoshino, M., Kita, H., and Okamoto, K.: Carbon molecular sieve membranes derived from phenolic resin with a pendant sulfonic acid group. Ind. Eng. Chem. Res. 40, 4801 (2001).
40. Pekala, R.W.: Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221 (1989).
41. Lu, A., Kiefer, A., and Schmidt, W.: Synthesis of polyacrylonitrile-based ordered mesoporous carbon with tunable pore structures. Chem. Mater. 16, 100 (2004).
42. Gierszal, K.P., Kim, T-W., Ryoo, R., and Jaroniec, M.: Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous p6mm and ia3̄d mesostructures as templates. J. Phys. Chem. B 109, 23263 (2005).
43. Fuertes, A.B.: Synthesis of ordered nanoporous carbons of tunable mesopore size by templating SBA-15 silica materials. Microporous Mesoporous Mater. 67, 273 (2004).
44. Tanaka, S., Nishiyama, N., Egashira, Y., and Ueyama, K.: Synthesis of ordered mesoporous carbons with channel structure from an organic–organic nanocomposite. Chem. Commun. 2125 (2005).
45. Zhang, X., Hu, H., Zhu, Y., and Zhu, S.: Effect of carbon molecular sieve on phenol formaldehyde novolac resin based carbon membranes. Sep. Purif. Technol. 52, 261 (2006).
46. Carretero, J., Benito, J.M., Guerrero-Ruiz, A., Rodríguez-Ramos, I., and Rodríguez, M.A.: Infiltrated glassy carbon membranes in γ-Al2O3 supports. J. Membr. Sci. 281, 500 (2006).
47. Yoshimune, M., Yamamoto, T., Nakaiwa, M., and Haraya, K.: Preparation of highly mesoporous carbon membranes via a sol–gel process using resorcinol and formaldehyde. Carbon 46, 1031 (2008).
48. Park, B., Ridel, B., Hsu, E., and Shields, J.: Differential scanning calorimetry of phenol–formaldehyde resins cure-accelerated by carbonates. Polymer 40, 1689 (1999).
49. Tanaka, S., Yasuda, T., Katayama, Y., and Miyake, Y.: Pervaporation dehydration performance of microporous carbon membranes prepared from resorcinol/formaldehyde polymer. J. Membr. Sci. 379, 52 (2011).
50. Horikawa, T., Hayashi, J., and Muroyama, K.: Controllability of pore characteristics of resorcinol–formaldehyde carbon aerogel. Carbon 42, 1625 (2004).
51. Menendez, I. and Fuertes, A.B.: Aging of carbon membranes under different environments. Carbon 39, 733 (2001).
52. Wang, T., Zhang, B., Qiu, J., Wu, Y., Zhang, S., and Cao, Y.: Effects of sulfone/ketone in poly(phthalazinone ether sulfone ketone) on the gas permeation of their derived carbon membranes. J. Membr. Sci. 330, 319 (2009).


Related content

Powered by UNSILO

Structure and gas permeation of nanoporous carbon membranes based on RF resin/F-127 with variable catalysts

  • Bing Zhang (a1), Xiaolong Dang (a1), Yonghong Wu (a1), Hongjing Liu (a1), Tonghua Wang (a2) and Jieshan Qiu (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.