Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T01:43:51.947Z Has data issue: false hasContentIssue false

A structural study of amorphous alkoxide-derived lead titanium complexes

Published online by Cambridge University Press:  31 January 2011

Barbara Malič
Affiliation:
Jožef Stefan Institute, Jamova 39, p.p. 3000, 1001 Ljubljana, Slovenia
Iztok Arčon
Affiliation:
Jožef Stefan Institute, Jamova 39, p.p. 3000, 1001 Ljubljana, Slovenia and School of Environmental Sciences, p.p. 301, 5001 Nova Gorica, Slovenia
Marija Kosec
Affiliation:
Jožef Stefan Institute, Jamova 39, p.p. 3000, 1001 Ljubljana, Slovenia
Alojz Kodre
Affiliation:
Jožef Stefan Institute, Jamova 39, p.p. 3000, 1001 Ljubljana, Slovenia and Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1001 Ljubljana, Slovenia
Get access

Abstract

We studied amorphous lead titanium alkoxide-derived heterometallic complexes, prepared from lead acetate and titanium n-propoxide or n-butoxide in parent alcohol medium. According to gas-liquid chromatography (GLC) and thermogravimetric analysis with mass spectrometry of evolved species (TGA/EGA) analyses, the type of alkoxide group influences oxo or acetate bridging, as well as the amounts of hydroxyl and organic groups bound to the metal network. From XANES and EXAFS analysis, local environments of lead and titanium atoms were determined within the analyzed range of 3.4 Å. Local environments depend weakly on the type of alkoxide used. Titanium atoms are pentacoordinated. A Pb–Ti correlation is established with lead atoms bound to titanium atoms by oxygen linkages.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chandler, C. D., Roger, C., and Hampden-Smith, M. J., Chem. Rev. 93, 1205 (1993).CrossRefGoogle Scholar
2.Jaffe, B., Cook, W. R., and Jaffe, H., Piezoelectric Ceramics (Academic Press, London, United Kingdom, 1971).Google Scholar
3.Carim, A. H., Tuttle, B. A., Doughty, D. H., and Martinez, S. L., J. Am. Ceram. Soc. 74, 1455 (1991).CrossRefGoogle Scholar
4.Kwok, C., Desu, S., and Kammerdiner, L., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 83.Google Scholar
5.Tani, T. and Payne, D. A., J. Am. Ceram. Soc. 77, 1242 (1994).CrossRefGoogle Scholar
6.Tomandl, G., Stiegelschmitt, A., and Boehner, R., in Science of Ceramics 14, edited by Taylor, D. (The Institute of Ceramics, Shelton, Stoke-on-Trent, Staffordshire, United Kingdom, 1991), p. 305.Google Scholar
7.Malič, B., Kosec, M., and Kolar, D., in Ceramic Processing Science and Technology, edited by Hausner, H., Messing, G. L., and Hirano, S. I. (Ceramic Transactions 51, The American Ceramic Society, Westerville, OH, 1995), p. 291.Google Scholar
8.Brinker, C. J. and Scherer, G. W., Sol-gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, CA, 1990).Google Scholar
9.Dekleva, T. W., Hayes, J. M., Cross, L. E., and Geoffrey, G. L., J. Am. Ceram. Soc. 71, C280 (1988).CrossRefGoogle Scholar
10.Beltram, T., Kosec, M., and Stavber, S., Mater. Res. Bull. 28, 313 (1993).CrossRefGoogle Scholar
11.Ramamurthi, S. D. and Payne, D. A., J. Am. Ceram. Soc. 73, 2547 (1990).CrossRefGoogle Scholar
12.Li, S., Condrate, R. A., Sr., and Spriggs, R. M., J. Mater. Sci. 24, 3873 (1989).CrossRefGoogle Scholar
13.Hubert-Pfalzgraf, L., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M. J., Klemperer, W. G., and Brinker, C. J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 15.Google Scholar
14.Schwartz, R. W., Bunker, B. C., Dimos, D. B., Assink, R. A., Tuttle, B. A., Tallant, D. R., and A.Weinstock, I., Integrated Ferroelectrics 2, 243 (1992).CrossRefGoogle Scholar
15.Koningsberger, D. C. and Prins, R., X-Ray Absorption—Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, Chemical Analysis (John Wiley & Sons, New York, 1988), p. 92.Google Scholar
16.Babonneau, F., Doeuff, S., Leaustic, A., Sanchez, C., Cartier, C., and Verdaguer, M., Inorg. Chem. 27, 3166 (1988).CrossRefGoogle Scholar
17.Sangupta, S. S., Ma, L., Adler, D. L., and Payne, D. A., J. Mater. Res. 10, 1345 (1995).CrossRefGoogle Scholar
18.Kolb, U., Abraham, I., Gutwerk, D., Ertel, T. S., Hoerner, W., Bertagnolli, H., Merklein, S., and Sporn, D., Physica B 208 & 209, 601 (1995).CrossRefGoogle Scholar
19.Kosec, M. and Malič, B., in Fourth Euroceramics 5: Electroceramics, edited by Gusmano, G. and Traversa, E. (Gruppo Editoriale Faenza Editrice, Italy, 1995), p. 9.Google Scholar
20.Malič, B., Ph.D. Thesis, University of Ljubljana (1995).Google Scholar
21.Handbook of Chemistry and Physics, 59th ed. (CRC Press, West Palm Beach, FL, 19781979), p. D1.Google Scholar
22.Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds (J. Wiley, New York, 1978).Google Scholar
23.Malič, B., Kosec, M., and Orel, B., Silicates Industriels 60, 163 (1995).Google Scholar
24.Chae, H. K., Payne, D. A., Xu, Z., and Ma, L., Chem. Mater. 6, 1589 (1994).CrossRefGoogle Scholar
25.Brydson, R., Sauer, H., Engel, W., Thomas, J. M., Zeitler, E., Kosugi, N., and Kuroda, H., J. Phys.: Condens. Matter 1, 797 (1989).Google Scholar
26.Stern, E. A., Newville, M., Ravel, B., Yacoby, Y., and Haskel, D., Physica B 208 & 209, 117 (1995).CrossRefGoogle Scholar
27.Rehr, J. J., Albers, R. C., and Zabinsky, S. I., Phys. Rev. Lett. 69, 3397 (1992).CrossRefGoogle Scholar
28.Hubert-Pfalzgraf, L., in Better Ceramics Through Chemistry VI, edited by Cheetham, A. K., Brinker, C. J., Mecartney, M. L., and Sanchez, C. (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1994), p. 21.Google Scholar
29.Daniele, S., Papiernik, R., Hubert-Pfalzgraf, L. G., Jagner, S., and Hakansson, M., Inorg. Chem. 34, 628 (1995).CrossRefGoogle Scholar
30.Sanchez, C., Livage, J., Henry, M., and Babonneau, F., J. Non-Cryst. Solids 100, 65 (1988).CrossRefGoogle Scholar
31.Sandstrom, D. R., Lytle, F., Wei, P. S. P., Greegor, R. B., Wong, J., and Schultz, P. J., J. Non-Cryst. Solids 41, 201 (1980).CrossRefGoogle Scholar
32.Liu, Z. and Davis, R. J., J. Phys. Chem. 98, 1253 (1994).CrossRefGoogle Scholar
33.Bradley, D. C., Gaze, R., and Wardlaw, W., J. Chem. Soc., 469 (1957).CrossRefGoogle Scholar