Skip to main content Accessibility help
×
Home

A structural, morphological, linear, and nonlinear optical spectroscopic studies of nanostructured Al-doped ZnO thin films: An effect of Al concentrations

  • Mohd Arif (a1), Mohd Shkir (a2), Salem AlFaify (a2), Vanga Ganesh (a2), Amit Sanger (a3), Hamed Algarni (a2), Paula M. Vilarinho (a4) and Arun Singh (a1)...

Abstract

Sol–gel spin coating is applied to fabricate the pure and different concentrations of aluminum (Al)-doped ZnO films on high-quality silicon substrates. All films are showing high crystallinity in X-ray diffraction study, and lattice constants were obtained using PowderX software. The value of crystallite size was found in range of 20–40 nm. EDX/SEM mapping was performed for 2 wt% Al-doped ZnO film, which shows the presence of Al and its homogeneous distribution in the film. SEM investigation shows nanorods morphology all over the surface of films, and the dimension of nanorods is found to increase with Al doping. The E(g)dire. values were estimate in range of 3.25–3.29 eV for all films. Linear refractive index was found in range of 1.5–2.75. The χ1 value is found in range of 0.13–1.4 for all films. The χ3 values are found in range of 0.0053 × 10−10 to 6.24 × 10−10 esu for pure and doped films. The n2 values were also estimated. These studies clearly showed that the properties of ZnO have been enriched by Al doping, and hence doped films are more appropriate for optoelectronic applications.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: arunsingh07@gmail.com

References

Hide All
1.El Hallani, G., Nasih, S., Fazouan, N., Liba, A., Khuili, M., Sajieddine, M., Mabrouki, M., Laanab, L., and Atmani, E.: Comparative study for highly Al and Mg doped ZnO thin films elaborated by sol gel method for photovoltaic application. J. Appl. Phys. 121, 135103 (2017).
2.Lee, S-H., Han, S-H., Jung, H.S., Shin, H., Lee, J., Noh, J-H., Lee, S., Cho, I-S., Lee, J-K., and Kim, J.: Al-doped ZnO thin film: A new transparent conducting layer for ZnO nanowire-based dye-sensitized solar cells. J. Phys. Chem. C 114, 7185 (2010).
3.Gupta, B., Jain, A., and Mehra, R.: Development and characterization of sol–gel derived Al doped ZnO/p-Si photodiode. J. Mater. Sci. Technol. 26, 223 (2010).
4.Ghosh, J., Ghosh, R., and Giri, P.: Tuning the visible photoluminescence in Al doped ZnO thin film and its application in label-free glucose detection. Sens. Actuators, B 254, 681 (2018).
5.Gupta, A. and Compaan, A.D.: All-sputtered 14% CdS∕ CdTe thin-film solar cell with ZnO: Al transparent conducting oxide. Appl. Phys. Lett. 85, 684 (2004).
6.Gupta, V. and Mansingh, A.: Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film. J. Appl. Phys. 80, 1063 (1996).
7.Khan, Z.R., Arif, M., and Singh, A.: Development and study of the structural and optical properties of hexagonal ZnO nanocrystals. Int. Nano Lett. 2, 22 (2012).
8.Cui, J.: Zinc oxide nanowires. Mater. Charact. 64, 43 (2012).
9.Fan, J., Li, T., and Heng, H.: Hydrothermal growth and optical properties of ZnO nanoflowers. Mater. Res. Express 1, 045024 (2014).
10.Vempati, S., Mitra, J., and Dawson, P.: One-step synthesis of ZnO nanosheets: A blue-white fluorophore. Nanoscale Res. Lett. 7, 470 (2012).
11.Zawadzka, A., Płóciennik, P., El Kouari, Y., Bougharraf, H., and Sahraoui, B.: Linear and nonlinear optical properties of ZnO thin films deposited by pulsed laser deposition. J. Lumin. 169, 483 (2016).
12.Shkir, M., Arif, M., Ganesh, V., Manthrammel, M.A., Singh, A., Maidur, S.R., Patil, P.S., Yahia, I.S., Algarni, H., and AlFaify, S.: Linear, third order nonlinear and optical limiting studies on MZO/FTO thin film system fabricated by spin coating technique for electro-optic applications. J. Mater. Res. 33, 38803889 (2018).
13.Ganesh, V., Yahia, I., AlFaify, S., and Shkir, M.: Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications. J. Phys. Chem. Solids 100, 115 (2017).
14.Benramache, S., Arif, A., Belahssen, O., and Guettaf, A.: Study on the correlation between crystallite size and optical gap energy of doped ZnO thin film. J. Nanostruct. Chem. 3, 80 (2013).
15.Ko, H., Chen, Y., Hong, S., Wenisch, H., Yao, T., and Look, D.C.: Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 77, 3761 (2000).
16.Sharma, P., Gupta, A., Rao, K., Owens, F.J., Sharma, R., Ahuja, R., Guillen, J.O., Johansson, B., and Gehring, G.: Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673 (2003).
17.Shkir, M., Arif, M., Ganesh, V., Manthrammel, M.A., Singh, A., Yahia, I.S., Maidur, S.R., Patil, P.S., and AlFaify, S.: Investigation on structural, linear, nonlinear and optical limiting properties of sol–gel derived nanocrystalline Mg doped ZnO thin films for optoelectronic applications. J. Mol. Struct. 1173, 375 (2018).
18.Mass, J., Bhattacharya, P., and Katiyar, R.: Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed laser deposition. Mater. Sci. Eng., B 103, 9 (2003).
19.Grinblat, G., Borrero-González, L., Nunes, L.A.d.O., Tirado, M., and Comedi, D.: Enhanced optical properties and (Zn, Mg) interdiffusion in vapour transport grown ZnO/MgO core/shell nanowires. Nanotechnology 25, 035705 (2013).
20.Sharma, B.K. and Khare, N.: Stress-dependent band gap shift and quenching of defects in Al-doped ZnO films. J. Phys. D: Appl. Phys. 43, 465402 (2010).
21.Shrisha, B., Bhat, S., Kushavah, D., and Naik, K.G.: Hydrothermal growth and characterization of Al-doped ZnO nanorods. Mater. Today 3, 1693 (2016).
22.Ebrahimizadeh Abrishami, M. and Soleimani Varaki, M.: Novel laser-assisted technique for rapid preparing ZnO: X nanoparticles. J. Laser Appl. 27, 042007 (2015).
23.Paraguay D, F., Estrada L, W., Acosta N, D.R., Andrade, E., and Miki-Yoshida, M.: Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films 350, 192 (1999).
24.Maache, M., Devers, T., and Chala, A.: Al-doped and pure ZnO thin films elaborated by sol–gel spin coating process for optoelectronic applications. Semiconductors 51, 1604 (2017).
25.Edison, D.J., Nirmala, W., Kumar, K.D.A., Valanarasu, S., Ganesh, V., Shkir, M., and AlFaify, S.: Structural, optical and nonlinear optical studies of AZO thin film prepared by SILAR method for electro-optic applications. Phys. B 523, 31 (2017).
26.Sofiani, Z., Sahraoui, B., Addou, M., Adhiri, R., Lamrani, M.A., Dghoughi, L., Fellahi, N., Derkowska, B., and Bala, W.: Third harmonic generation in undoped and X doped ZnO films (X: Ce, F, Er, Al, Sn) deposited by spray pyrolysis. J. Appl. Phys. 101, 063104 (2007).
27.Nagaraja, K., Pramodini, S., Kumar, A.S., Nagaraja, H., Poornesh, P., and Kekuda, D.: Third-order nonlinear optical properties of Mn doped ZnO thin films under cw laser illumination. Opt. Mater. 35, 431 (2013).
28.Scherrer, P.: Göttinger nachrichten math. Physics 2, 98 (1918).
29.Shakir, M., Kushwaha, S., Maurya, K., Bhagavannarayana, G., and Wahab, M.: Characterization of ZnSe nanoparticles synthesized by microwave heating process. Solid State Commun. 149, 2047 (2009).
30.Shakir, M., Singh, B., Gaur, R., Kumar, B., Bhagavannarayana, G., and Wahab, M.: Dielectric behaviour and ac electrical conductivity analysis of ZnSe chalcogenide nanoparticles. Chalcogenide Lett. 6, 655 (2009).
31.Mohd, S., Khan, Z.R., Hamdy, M.S., Algarni, H., and AlFaify, S.: A facile microwave-assisted synthesis of PbMoO 4 nanoparticles and their key characteristics analysis: A good contender for photocatalytic applications. Mater. Res. Express 5, 095032 (2018).
32.Shkir, M., Yahia, I.S., Ganesh, V., Bitla, Y., Ashraf, I.M., Kaushik, A., and AlFaify, S.: A facile synthesis of Au-nanoparticles decorated PbI2 single crystalline nanosheets for optoelectronic device applications. Sci. Rep. 8, 13806 (2018).
33.Shkir, M. and AlFaify, S.: Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Rep. 7, 16091 (2017).
34.Yahia, I.S., Shkir, M., AlFaify, S., Ganesh, V., Zahran, H.Y., and Kilany, M.: Facile microwave-assisted synthesis of Te-doped hydroxyapatite nanorods and nanosheets and their characterizations for bone cement applications. Mater. Sci. Eng., C 72, 472 (2017).
35.Shkir, M., Yahia, I.S., Kilany, M., Abutalib, M.M., AlFaify, S., and Darwish, R.: Facile nanorods synthesis of KI:HAp and their structure-morphology, vibrational and bioactivity analyses for biomedical applications. Ceram. Int. 45, 50 (2019).
36.Shkir, M., Kilany, M., and Yahia, I.S.: Facile microwave-assisted synthesis of tungsten-doped hydroxyapatite nanorods: A systematic structural, morphological, dielectric, radiation and microbial activity studies. Ceram. Int. 43, 14923 (2017).
37.Wei, X., Man, B., Liu, M., Xue, C., Zhuang, H., and Yang, C.: Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2. Phys. B 388, 145 (2007).
38.Yahia, S.B., Znaidi, L., Kanaev, A., and Petitet, J.: Raman study of oriented ZnO thin films deposited by sol–gel method. Spectrochim. Acta, Part A 71, 1234 (2008).
39.Jaffe, J., Pandey, R., and Kunz, A.: Electronic structure of the rocksalt-structure semiconductors ZnO and CdO. Phys. Rev. B 43, 14030 (1991).
40.Dulub, O., Boatner, L.A., and Diebold, U.: STM study of the geometric and electronic structure of ZnO(0001)–Zn, $\left( {000\bar{1}} \right)$–O, $\left( {00\bar{1}0} \right)$, and $\left( {00\bar{2}0} \right)$ surfaces. Surf. Sci. 519, 201 (2002).
41.Chahmat, N., Haddad, A., Ain-Souya, A., Ganfoudi, R., Attaf, N., and Ghers, M.: Effect of Sn doping on the properties of ZnO thin films prepared by spray pyrolysis. J. Mod. Phys. 3, 1781 (2012).
42.Shishiyanu, S.T., Shishiyanu, T.S., and Lupan, O.I.: Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor. Sens. Actuators, B 107, 379 (2005).
43.Tsay, C-Y., Cheng, H-C., Tung, Y-T., Tuan, W-H., and Lin, C-K.: Effect of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol–gel method. Thin Solid Films 517, 1032 (2008).
44.Bougrine, A., El Hichou, A., Addou, M., Ebothé, J., Kachouane, A., and Troyon, M.: Structural, optical and cathodoluminescence characteristics of undoped and tin-doped ZnO thin films prepared by spray pyrolysis. Mater. Chem. Phys. 80, 438 (2003).
45.Miki-Yoshida, M., Morales, J., and Solis, J.: Influence of Al, In, Cu, Fe, and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films 373, 137 (2000).
46.Kubelka, P. and Munk, F.: A contribution to the optics of pigments. Z. Tech. Phys. 12, 593 (1931).
47.Shkir, M.: Effect of titan yellow dye on morphological, structural, optical, and dielectric properties of zinc(tris) thiourea sulphate single crystals. J. Mater. Res. 31, 1046 (2016).
48.Shkir, M., AlFaify, S., Ganesh, V., Yahia, I., Algarni, H., and Shoukry, H.: Brilliant green dye added zinc (tris) thiourea sulphate monocrystal growth with enhanced crystalline perfection, optical, photoluminescence and mechanical properties. J. Mater. Sci.: Mater. Electron. 27, 10673 (2016).
49.Ajili, M., Castagné, M., and Turki, N.K.: Study on the doping effect of Sn-doped ZnO thin films. Superlattices Microstruct. 53, 213 (2013).
50.Andrade, E. and Miki-Yoshida, M.: Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films 350, 192 (1999).
51.Shkir, M., Ganesh, V., AlFaify, S., Yahia, I., and Zahran, H.: Tailoring the linear and nonlinear optical properties of NiO thin films through Cr3+ doping. J. Mater. Sci.: Mater. Electron. 29, 6446 (2018).
52.Ganeev, R., Ryasnyansky, A., Kamalov, S.R., Kodirov, M., and Usmanov, T.: Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals. J. Phys. D: Appl. Phys. 34, 1602 (2001).
53.Boyd, R.W.: Nonlinear Optics (Academic press, Elsevier Science, San Diego, 2003).
54.Shkir, M., Ganesh, V., AlFaify, S., and Yahia, I.S.: Structural, linear and third order nonlinear optical properties of drop casting deposited high quality nanocrystalline phenol red thin films. J. Mater. Sci.: Mater. Electron. 28, 10573 (2017).
55.Frumar, M., Jedelský, J., Frumarova, B., Wagner, T., and Hrdlička, M.: Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non-Cryst. Solids 326, 399 (2003).
56.Ticha, H. and Tichy, L.: Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381 (2002).
57.Wang, C.C.: Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2, 2045 (1970).
58.Wynne, J.: Nonlinear optical spectroscopy of χ(3) in LiNbO3. Phys. Rev. Lett. 29, 650 (1972).
59.Nasu, H. and Mackenzie, J.D.: Nonlinear optical properties of glasses and glass or gel-based composites. Opt. Eng. 26, 262102 (1987).
60.Adair, R., Chase, L., and Payne, S.A.: Nonlinear refractive index of optical crystals. Phys. Rev. B 39, 3337 (1989).
61.Hanna, D.: Handbook of laser science and technology. J. Mod. Opt. 35, 12 (1988).
62.Ganesh, V., Shkir, M., AlFaify, S., Yahia, I.S., Zahran, H.Y., and El-Rehim, A.F.A.: Study on structural, linear and nonlinear optical properties of spin coated N doped CdO thin films for optoelectronic applications. J. Mol. Struct. 1150(Suppl. C), 523 (2017).
63.Chtouki, T., Soumahoro, L., Kulyk, B., Bougharraf, H., Kabouchi, B., Erguig, H., and Sahraoui, B.: Comparison of structural, morphological, linear and nonlinear optical properties of NiO thin films elaborated by spin-coating and spray pyrolysis. Optik 128, 8 (2017).
64.Srinatha, N., Raghu, P., Mahesh, H., and Angadi, B.: Spin-coated Al-doped ZnO thin films for optical applications: Structural, micro-structural, optical and luminescence studies. J. Alloys Compd. 722, 888 (2017).

Keywords

A structural, morphological, linear, and nonlinear optical spectroscopic studies of nanostructured Al-doped ZnO thin films: An effect of Al concentrations

  • Mohd Arif (a1), Mohd Shkir (a2), Salem AlFaify (a2), Vanga Ganesh (a2), Amit Sanger (a3), Hamed Algarni (a2), Paula M. Vilarinho (a4) and Arun Singh (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed