Skip to main content Accessibility help
×
Home

Structural features of core–shell zeolite–zeolite composite and its performance for methanol conversion into gasoline and diesel

  • Jiajun Zheng (a1), Xiaobo Sun (a1), Yanze Du (a2), Bo Qin (a3), Yanyu Zhang (a1), Hongyan Zhang (a1), Meng Pan (a1) and Ruifeng Li (a1)...

Abstract

Zeolite–zeolite composite composed of alumina-rich hierarchically porous ZSM-5 cores and high-silicon MFI shells was prepared by a hydrothermal synthesis procedure, in which a commercial ZSM-5 zeolite with a SiO2/Al2O3 of 36 was treated by an alkaline solution and then used as a supporter for epitaxial growth of a polycrystalline Silicalite-1 zeolite shell (denoted as MMZsa). Acid sites associated with framework Al on exterior surfaces of ZSM-5 zeolite cores are therefore passivated in different degrees by the epitaxial MFI zeolite shell. The structural, crystalline, and textural properties of the as-synthesized samples were characterized by x-ray powder diffraction (XRD), energy-dispersive x-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), N2 adsorption-desorption, in situ IR spectra of pyridine and NH3-TPD. Aluminum species were observed to transfer from the alumina-rich cores to the high-silica shells. The adjustable thickness and SiO2/Al2O3 ratio of the shell offer the as-synthesized composite a potential and high-efficiency catalyst for methanol conversion into gasoline and diesel. As compared with the commercial ZSM-5 zeolite, the composite catalyst exhibits excellent catalytic performances with a longer catalytic life as well as a higher conversion and a slightly higher yield of diesel oil.

Copyright

Corresponding author

a) Address all correspondence to these authors. e-mail: zhengjiajun@tyut.edu.cn
b) e-mail: rfli@tyut.edu.cn

References

Hide All
1. Ghorbanpour, A., Gumidyala, A., Grabow, L.C., Crossley, S.P., and Rimer, J.D.: Epitaxial growth of ZSM-5@silicalite-1: A core–shell zeolite designed with passivated surface acidity. ACS Nano 9, 4006 (2015).
2. Isaev, Y. and Fripiat, J.J.: A Lewis acid site-activated reaction in zeolites: Thiophene acylation by butyryl chloride. J. Catal. 182, 257 (1999).
3. Garralón, G., Fornés, V., and Corma, A.: Faujasites dealuminated with ammonium hexafluorosilicate: Variables affecting the method of preparation. Zeolites 8, 268 (1988).
4. Shen, B.J., Qin, Z.X., Gao, X.H., Lin, F., Zhou, S.G., Shen, W., Wang, B.J., Zhao, H.J., and Liu, H.H.: Desilication by alkaline treatment and increasing the silica to alumina ratio of zeolite Y. Chin. J. Catal. 33, 152 (2012).
5. Qin, Z.X., Shen, B.J., Yu, Z.W., Deng, F., Zhao, L., Zhou, S., Yuan, D.L., Gao, X.H., Wang, B.J., Zhao, H.J., and Liu, H.H.: A defect-based strategy for the preparation of mesoporous zeolite Y for high-performance catalytic cracking. J. Catal. 298, 102 (2013).
6. Enterría, M., Suárez-García, F., Martínez-Alonso, A., and Tascón, J.M.D.: Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly. J. Alloys Compd. 583, 60 (2014).
7. Jia, L.X., Sun, X.Y., Ye, X.Q., Zou, C.L., Gu, H.F., Huang, Y., Niu, G.X., and Zhao, D.Y.: Core–shell composite of USY@Mesosilica: Synthesis and application in cracking heavy molecules with high liquid yield. Microporous Mesoporous Mater. 176, 16 (2013).
8. Al-Khattaf, S.: Catalytic transformation of toluene over a high-acidity Y-zeolite based catalyst. Energy Fuels 20, 946 (2006).
9. Odedairo, T. and Al-Khattaf, S.: Kinetic investigation of benzene ethylation with ethanol over USY zeolite in a riser simulator. Ind. Eng. Chem. Res. 49, 1642 (2010).
10. Agostini, G., Lamberti, C., Palin, L., Milanesio, M., Danilina, N., Xu, B., Janousch, M., and van Bokhoven, J.A.: In situ XAS and XRPD parametric Rietveld refinement to understand dealumination of Y zeolite catalyst. J. Am. Chem. Soc. 132, 667 (2010).
11. Ma, D., Deng, F., Fu, R.Q., Han, X.W., and Bao, X.H.: Mas NMR studies on the dealumination of zeolite MCM-22. J. Phys. Chem. B 105, 1770 (2001).
12. Maier, S.M., Jentys, A., and Lercher, J.A.: Steaming of zeolite BEA and its effect on acidity: A comparative NMR and IR spectroscopic study. J. Phys. Chem. C 115, 8005 (2011).
13. Aramburo, L.R., Karwacki, L., Cubillas, P., Asahina, S., Matthijs de Winter, D.A., Drury, M.R., Buurmans, I.L.C., Stavitski, E., Mores, D., Daturi, M., Bazin, P., Dumas, P., Thibault-Starzyk, F., Post, J.A., Anderson, M.W., Terasaki, O., and Weckhuysen, B.M.: The porosity, acidity, and reactivity of dealuminated zeolite ZSM-5 at the single particle level: The influence of the zeolite architecture. Chem.–Eur. J. 17, 13773 (2011).
14. Qin, Z., Lakiss, L., Gilson, J-P., Thomas, K., Goupil, J-M., Fernandez, C., and Valtchev, V.: Chemical equilibrium controlled etching of MFI-type zeolite and its influence on zeolite structure, acidity, and catalytic activity. Chem. Mater. 25, 2759 (2013).
15. Chandra Shekara, B.M., Jai Prakash, B.S., and Bhat, Y.S.: Dealumination of zeolite BEA under microwave irradiation. ACS Catal. 1, 193 (2011).
16. Kao, H.M. and Chen, Y.C.: 27Al and 19F solid-state NMR studies of zeolite H-β dealuminated with ammonium hexafluorosilicate. J. Phys. Chem. B 107, 3367 (2003).
17. Triantafillidis, C.S. and Evmiridis, N.P.: Dealuminated H-Y zeolites: Influence of the number and type of acid sites on the catalytic activity for isopropanol dehydration. Ind. Eng. Chem. Res. 39, 3233 (2000).
18. Triantafillidis, C.S., Vlessidis, A.G., and Evmiridis, N.P.: Dealuminated H-Y zeolites: Influence of the degree and the type of dealumination method on the structural and acidic characteristics of H-Y zeolits. Ind. Eng. Chem. Res. 39, 307 (2000).
19. van Donk, S., Janssen, A.H., Bitter, J.H., and de Jong, K.P.: Generation, characterization, and impact of mesopores in zeolite catalysts. Catal. Rev. 45, 297 (2003).
20. Lin, X.Y., Fan, Y., Shi, G., Liu, H.Y., and Bao, X.J.: Coking, and deactivation behavior Of HZSM-5 zeolite-based FCC gasoline hydro-upgrading catalyst. Energy Fuels 21, 2517 (2007).
21. Abudawood, R.H., Alotaibi, F.M., and Garforth, A.A.: Hydroisomerization of n-heptane over Pt-loaded USY zeolite. Effect of steaming, dealumination, and the resulting structure on catalytic properties. Ind. Eng. Chem. Res. 50, 9918 (2011).
22. Hibino, T., Niwa, M., and Murakami, Y.: Shape-selectivity over HZSM-5 modified by chemical vapor deposition of silicon alkoxide. J. Catal. 128, 551 (1991).
23. Kim, J.H., Ishida, A., Okajima, M., and Niwa, M.: Modification of HZSM-5 by CVD of various silicon compounds and generation of para-selectivity. J. Catal. 161, 387 (1996).
24. Cejka, J., Zilkova, N., Wichterlova, B., Elder-Mirth, G., and Lercher, J.A.: Decisive role of transport rate of products for zeolite para-selectivity: Effect of coke deposition and external surface silylation on activity and selectivity of HZSM-5 in alkylation of toluene. Zeolites 17, 265 (1996).
25. Zheng, S., Tanaka, H., Jentys, A., and Lercher, J.A.: Novel model explaining toluene diffusion in HZSM-5 after surface modification. J. Phys. Chem. B 108, 1337 (2004).
26. Chen, N.Y., Kaeding, W.W., and Dwyer, F.G.: Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts. J. Am. Chem. Soc. 101, 6783 (1979).
27. Kaeding, W.W., Chu, C., Young, L.B., Weinstein, B., and Butter, S.A.: Selective alkylation of toluene with methanol to produce para-Xylene. J. Catal. 67, 159 (1981).
28. Parker, W.O., de Angelis, Jr. A., Flego, C., Millini, R., Perego, C., Zanardi, S.: Unexpected destructive dealumination of zeolite beta by silylation. J. Phys. Chem. C 114, 8459 (2010).
29. Moreira, C.R., Herbst, M.H., de la Piscina, P.R., Fierro, J-L.G., Homs, N., and Pereira, M.M.: Evidence of multi-component interaction in a V-Ce-HUSY catalyst: Is the cerium-EFAL interaction the key of vanadium trapping. Microporous Mesoporous Mater. 115, 253 (2008).
30. Duan, X.P., Teng, Y., Wang, A.J., Kogan, V.M., Li, X., and Wang, Y.: Role of sulfur in hydrotreating catalysis over nickel phosphide. J. Catal. 261, 232 (2009).
31. Bando, K.K., Koike, Y., Kawai, T., Tateno, G., Oyama, S.T., Inada, Y., Nomura, M., and Asakura, K.: Quick x-ray absorption fine structure studies on the activation process of Ni2P supported on K-USY. J. Phys. Chem. C 115, 7466 (2011).
32. Lutz, W., Toufar, H., Heidemann, D., Salman, N., Rüscher, C.H., and Gesing, T.M., Buhl, J-Chr., Bertram, R.: Siliceous extra-framework species in dealuminated Y zeolites generated by steaming. Microporous Mesoporous Mater. 104, 171 (2007).
33. Féron, B., Gallezot, P., and Bourgogne, M.: Hydrothermal aging of cracking catalysts: V. Vanadium passivation by rare-earth compounds soluble in the feedstock. J. Catal. 134, 469 (1992).
34. Goossens, A.M., Wouters, B.H., Grobet, P.J., Buschmann, V., Fiermans, L., and Martens, J.A.: Synthesis and characterization of epitaxial FAU-on-EMT zeolite overgrowth materials. Eur. J. Inorg. Chem. 5, 1167 (2001).
35. Yonkeu, A.L., Miehe, G., Fuess, H., Goossens, A.M., and Martens, J.A.: A new overgrowth of mazzite on faujasite zeolite crystal investigated by x-ray diffraction and electron microscopy. Microporous Mesoporous Mater. 96, 396 (2006).
36. Miyamoto, M., Kamei, T., Nishiyama, N., Egashira, Y., and Ueyama, K.: Single crystals of ZSM-5/Silicalites composites. Adv. Mater. 17, 1985 (2005).
37. Okamoto, M. and Osafune, Y.: MFI-type zeolite with a core–shell structure with minimal defects synthesized by crystal overgrowth of aluminum-free MFI-type zeolite on aluminum-containing zeolite and its catalytic performance. Microporous Mesoporous Mater. 143, 413 (2011).
38. Zhang, X.W., Guo, Q., Qin, B., Zhang, Z.Z., Ling, F.X., Sun, W.F., and Li, R.F.: Structural features of binary microporous zeolite composite Y-beta and its hydrocracking performance. Catal. Today 149, 212 (2010).
39. Zheng, J.J., Zhang, X.W., Wang, Y., Bai, Y.D., Sun, W.F., and Li, R.F.: Synthesis and catalytic performance of a bi-phase core-shell zeolite composite. J. Porous Mater. 16, 731 (2009).
40. Ohsuna, T., Terasaki, O., Nakagawa, Y., Zones, S.I., and Hiraga, K.: Electron microscopic study of intergrowth of MFI and MEL: Crystal faults in B-MEL. J. Phys. Chem. B 101, 9881 (1997).
41. Kloetstra, K.R., Zandbergen, H.W., Jansen, J.C., and van Bekkum, H.: Overgrowth of mesoporous MCM-41 on faujasite. Microporous Mater. 6, 287 (1996).
42. Qian, X.F., Du, J.M., Li, B., Si, M., Yang, Y.S., Hu, Y.Y., Niu, G.X., Zhang, Y.H., Xu, H.L., Tu, B., Tang, Y., and Zhao, D.Y.: Controllable fabrication of uniform core–shell structured zeolite@SBA-15 composites. Chem. Sci. 2, 2006 (2011).
43. Rollmann, L.D.: ZSM-5 containing alumin-free shells on its surface. USA Patent, 4088605, May 9, 1978.
44. Kong, D.J., Zou, W., Zheng, J.L., Qi, X.L., and Fang, D.Y.: Crystallization kinetics and influencing factors in the syntheses of MFI/MFI core–shell zeolites. Acta Chim. Sin. 25, 1921 (2009).
45. Zhou, Y.X., Tong, W.Y., Zou, W., Qi, X.L., and Kong, D.J.: Manufacture of b-oriented ZSM-5/silicalite-1 core/shell structured zeolite catalyst. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 45, 1356 (2015).
46. Lee, C.S., Park, T.J., and Lee, W.Y.: Alkylation of toluene over double structure ZSM-5 type catalysts covered with a silicalite shell. Appl. Catal., A 96, 151 (1993).
47. Li, Q.H., Wang, Z., Hedlund, J., Creaser, D., Zhang, H., Zou, X.D., and Bons, A-J.: Synthesis and characterization of colloidal zoned MFI crystals. Microporous Mesoporous Mater. 78, 1 (2005).
48. Vu, D.V., Miyamoto, M., Nishiyama, N., Ichikawa, S., Egashira, Y., and Ueyama, K.: Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites. Microporous Mesoporous Mater. 115, 106 (2008).
49. Vu, D.V., Miyamoto, M., Nishiyama, N., Egashira, Y., and Ueyama, K.: Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals. J. Catal. 243, 389 (2006).
50. Ogura, M., Shinomiya, S., Tateno, J., Nara, Y., Nomura, M., Kikuchi, E., and Matsukata, M.: Alkali-treatment technique—New method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl. Catal., A 219, 33 (2001).
51. Xue, Z.T., Ma, J.H., Zhang, T., Miao, H.X., and Li, R.F.: Synthesis of nanosized ZSM-5 zeolite with intracrystalline mesopores. Mater. Lett. 68, 1 (2012).
52. Liu, R., Ren, Y., Shi, Y., Zhang, F., Zhang, L., Tu, B., and Zhao, D.: Controlled synthesis of ordered mesoporous C-TiO2 nanocomposites with crystalline titania frameworks from organic-inorganic-amphiphilic coassembly. Chem. Mater. 20, 1140 (2008).
53. Zheng, J.J., Zeng, Q.H., Zhang, Y.Y., Wang, Y., Ma, J.H., Zhang, X.W., Sun, W.F., and Li, R.F.: Hierarchical porous zeolite composite with a core–shell structure fabricated using β-zeolite crystals as nutrients as well as cores. Chem. Mater. 22, 6065 (2010).
54. Zhang, Q.Q., Ming, W.X., Ma, J.H., Zhang, J.L., Wang, P., and Li, R.F.: De novo assembly of a mesoporous beta zeolite with intracrystalline channels and its catalytic performance for biodiesel production. J. Mater. Chem. A 2, 8712 (2014).
55. Wang, Z.P., Li, C., Cho, H.J., Kung, S-C., Snyder, M.A., and Fan, W.: Direct, single-step synthesis of hierarchical zeolites without secondary templating. J. Mater. Chem. A 3, 1298 (2015).
56. Wang, C., Yang, M., Tian, P., Xu, S.T., Yang, Y., Wang, D.H., Yuan, Y.Y., and Liu, Z.M.: Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. J. Mater. Chem. A 3, 5608 (2015).
57. Groen, J.C., Peffer, L.A.A., Moulijn, J.A., and Pérez-Ramírez, J.: On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium. Microporous Mesoporous Mater. 69, 29 (2004).
58. Jung, J.S., Park, J.W., and Seo, G.: Catalytic cracking of n-octane over alkali-treated MFI zeolites. Appl. Catal., A 288, 149 (2005).
59. Saxena, S.K., Viswanadham, N., and Sharma, T.: Breakthrough mesopore creation in BEA and its enhanced catalytic performance in solvent-free liquid phase tert-butylation of phenol. J. Mater. Chem. A 2, 2487 (2014).
60. Aguayo, A.T., Gayubo, A.G., Ereña, J., Vivanco, R., and Bilbao, J.: Study of the regeneration stage of the MTG process in a pseudoadiabatic fixed bed reactor. Chem. Eng. J. 92, 141 (2003).
61. Keil, F.J.: Methanol-to-hydrocarbons: process technology. Microporous Mesoporous Mater. 29, 49 (1999).
62. Stöcker, M.: Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater. 29, 3 (1999).
63. Bjørgen, M., Svelle, S., Joensen, F., Nerlov, J., Kolboe, S., Bonino, F., Palumbo, L., Bordiga, S., and Olsbye, U.: Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. J. Catal. 249, 195 (2007).
64. Liu, Z.P., Fan, W.M., Ma, J.H., and Li, R.F.: Adsorption, diffusion and catalysis of mesostructured zeolite HZSM-5. Adsorption 18, 493 (2012).
65. Lee, S., Kim, H., and Choi, M.: Controlled decationization of X zeolite: mesopore generation within zeolite crystallites for bulky molecular adsorption and transformation. J. Mater. Chem. A 1, 12096 (2013).
66. Li, J.H., Wang, Y.N., Jia, W.Z., Xi, Z.W., Chen, H.H., Zhu, Z.R., and Hu, Z.H.: Effect of external surface of HZSM-5 zeolite on product distribution in the conversion of methanol to hydrocarbons. J. Energy Chem. 23, 771 (2014).
67. Fan, D., Tian, P., Su, X., Yuan, Y.Y., Wang, D.H., Wang, C., Yang, M., Wang, L.Y., Xu, S.T., and Liu, Z.M.: Aminothermal synthesis of CHA-type SAPO molecular sieves and their catalytic performance in methanol to olefins (MTO) reaction. J. Mater. Chem. A 1, 14206 (2013).

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed