Skip to main content Accessibility help

Structural characterization of sputter-deposited LaNiO3 thin films on Si substrate by x-ray reflectivity and diffraction

  • Hsin-Yi Lee (a1) and Tai-Bor Wu (a2)


X-ray reflectivity and diffraction were applied to characterize the highly (100)-textured thin films of LaNiO3, which were deposited on Si substrate via radio frequency magnetron sputtering at temperatures ranging from 250 to 450 °C. Two interference fringes of different period were observed from the reflectivity curves, and the fitting result indicates that in addition to the normal lanthanum-nickel oxide layer, a transition layer, which has a larger mass density than the previous one, exists in the sputter-deposited films. A comparison of the measured x-ray diffraction intensity with that calculated from layer thickness and mass density obtained from reflectivity data indicates that the transition layer is noncrystalline. The x-ray diffraction result also shows that there is a significant decrease of (100) diffraction intensity relative to that of (200) as increasing the deposition temperature. Using the reflectivity and diffraction data along with results of electron diffraction and film composition analysis from our other studies, such a change of relative intensity between the two diffraction peaks is attributed to the increasing content of two also highly textured La-rich phases, i.e., (110)-textured La4Ni3O10 and (100)-textured La2NiO4, in addition to the LaNiO3.



Hide All
1.Bruchhaus, R., Pitzer, D., Eibl, O., Scheithauer, V., and Hoesler, W., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and , B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 123.
2.Jiang, M. C. and Wu, T. B., J. Mater. Res. 9, 1879 (1994).
3.Scott, J. F. and Paz de Araujo, C. A., Science 246, 1400 (1989).
4.Eom, C. B., van Dover, R. B., Phillips, J. M., Fleming, R. M., Cava, R. J., Marshall, J. H., Werder, D. J., Chen, C. H., and Fork, D. K., in Ferroelectric Thin Films III, edited by Tuttle, B. A., Myers, E. R., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 145.
5.Vijat, D. P. and Desu, S. B., J. Electrochem. Soc. 140, 2640 (1993).
6.Nakamuna, T., Nakao, Y., Kamisawa, A., and Takasu, H., Jpn. J. Appl. Phys. 33, 5207 (1994).
7.Ramesh, R., Chan, W. K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J. M., Keramidas, V. G., Fork, D. K., Lee, J., and Safari, A., Appl. Phys. Lett. 61, 1537 (1992).
8.Wold, A., Post, B., and Banks, E., J. Am. Chem. Soc. 70, 4911 (1957).
9.Obayashi, H. and Kudo, T., Jpn. J. Appl. Phys. 14, 330 (1957).
10.Rajeez, K. P., Shivakuma, G. V., and Raychaudhmi, A. K., Solid State Commun. 79, 591 (1991).
11.Yang, C. C., Chen, M. S., Hong, T. J., Wu, C. M., Wu, J.M., and Wu, T. B., Appl. Phys. Lett. 66, 2643 (1995).
12.Shyu, M. J., Hong, T. J., and Wu, T. B., Jpn. J. Appl. Phys. 34, 3647 (1995).
13.Shyu, M. J., Hong, T. J., and Wu, T. B., Mater. Lett. 23, 221 (1995).
14.Chen, M. S., Wu, J. M., and Wu, T. B., Jpn. J. Appl. Phys. 34, 4870 (1995).
15.Chen, M. S., Wu, T. B., and Wu, J. M., Appl. Phys. Lett. (in press).
16.Kiessig, H., Ann. Physik. 10, 715 (1931).
17.Cowley, R. A. and Ryan, T. W., J. Phys. D. 20, 61 (1987).
18.Parratt, L. G., Phys. Rev. 95, 359 (1954).
19.Braslau, A., Pershan, P. S., Swislow, G., Ocko, B. M., and Als-Nielsen, J., Phys. Rev. A 38, 2457 (1988).
20.Heald, S. M., Chen, H., and Tranquada, J. M., Phys. Rev. B 38, 1016 (1988).
21.Lucas, C. A., Hatton, P. D., Bates, S., Ryan, W., Miles, S., and Tanner, B. K., J. Appl. Phys. 63, 1936 (1988).
22.Chen, H. and Heald, S. M., J. Appl. Phys. 66, 1793 (1989).
23.Tidswell, I. M., Ocko, B. M., Pershan, P. S., Wasserman, S. R., Whitesides, G. M., and Axe, J. D., Phys. Rev. B 41, 1111 (1990).
24.Bowen, D. K., Loxley, N., Tanner, B. K., Cooke, M. L., and Capano, M. A., in Advances in Surfaces and Thin Film Diffraction, edited by Huang, T. C., Cohen, P. I., and Eaglesham, D. J. (Mater. Res. Soc. Symp. Proc. 208, Pittsburgh, PA, 1991), p. 113.
25.Wu, T. B., Hong, T. J., and Jiang, M. C., Mater. Chem. Phys. 36, 337 (1994).
26.Sinha, S. K., Sirota, E. B., Garoff, S., and Stanley, H. B., Phys. Rev. B 38, 2297 (1988).
27.Sinha, S. K., Physica B 173, 25 (1991).
28.Yoneda, Y., Phys. Rev. 131, 2010 (1963).
29.Tseng, S. Y. and Lee, C. H., J. Vac. Soc. ROC. 6, 4 (1993).
30.Lee, H. Y., Wu, T. B., and Lee, J. F., J. Appl. Phys. 80, 2175 (1996).
31.Hong, T. J., Ph.D. Thesis (in Chinese), National Tsing Hua University, 1995.
32. JCPDS 34–314 and 33–710, Wustenberg, H., Hahn, Inst. für Kristallogr., Techische Hochschule, Aachen, Germany, JCPDS Grant-in-Report, 1981.
33. JCPDS 35–1242, Brisi, C., Vallino, M. and Abbattistra, F., J. Less-Comm. Met. 79, 215 (1981).
34.Cullity, B. D., Elements of X-ray Diffraction, 2nd ed., edited by Cohen, M. (Addison-Wesley Publishing Company, Inc., Reading, MA, 1978), pp. 134 and 292.
35.Liu, Y. W., M.S. Thesis (in Chinese), National Tsing Hua University, 1996.

Structural characterization of sputter-deposited LaNiO3 thin films on Si substrate by x-ray reflectivity and diffraction

  • Hsin-Yi Lee (a1) and Tai-Bor Wu (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed